Your browser doesn't support javascript.
loading
Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.
Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang.
Afiliación
  • Pecevski D; Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria. dejan@igi.tugraz.at
PLoS Comput Biol ; 7(12): e1002294, 2011 Dec.
Article en En | MEDLINE | ID: mdl-22219717
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away") and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neuronas Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neuronas Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos