Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior.
Eur Cell Mater
; 22: 359-76, 2011 Dec 17.
Article
en En
| MEDLINE
| ID: mdl-22179935
The ultimate goal of this work was to develop a biocompatible and biomimetic in situ crosslinkable hydrogel scaffold with an instructive capacity for bone regenerative treatment. To this end, synthetic hydrogels were functionalized with two key components of the extracellular matrix of native bone tissue, i.e. the three-amino acid peptide sequence RGD (which is the principal integrin-binding domain responsible for cell adhesion and survival of anchorage-dependent cells) and calcium phosphate (CaP) nanoparticles in the form of hydroxyapatite (which are similar to the inorganic phase of bone tissue). Rat bone marrow osteoblast-like cells (OBLCs) were encapsulated in four different biomaterials (plain oligo(poly(ethylene glycol) fumarate) (OPF), RGD-modified OPF, OPF enriched with CaP nanoparticles and RGD-modified OPF enriched with CaP nanoparticles) and cell survival, cell spreading, proliferation and mineralized matrix formation were determined via cell viability assay, histology and biochemical analysis for alkaline phosphatase activity and calcium. This study showed that RGD peptide sequences promoted cell spreading in OPF hydrogels and hence play a crucial role in cell survival during the early stage of culture, whereas CaP nanoparticles significantly enhanced cell-mediated hydrogel mineralization. Although cell spreading and proliferation activity were inhibited, the combined effect of RGD peptide sequences and CaP nanoparticles within OPF hydrogel systems elicited a better biological response than that of the individual components. Specifically, both a sustained cell viability and mineralized matrix production mediated by encapsulated OBLCs were observed within these novel biomimetic composite systems.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Péptidos
/
Fosfatos de Calcio
/
Sustitutos de Huesos
/
Hidrogeles
/
Materiales Biomiméticos
/
Nanopartículas
Límite:
Animals
Idioma:
En
Revista:
Eur Cell Mater
Año:
2011
Tipo del documento:
Article
País de afiliación:
Países Bajos
Pais de publicación:
Suiza