Your browser doesn't support javascript.
loading
From chemical graphs in computer-aided drug design to general Markov-Galvez indices of drug-target, proteome, drug-parasitic disease, technological, and social-legal networks.
Riera-Fernández, Pablo; Munteanu, Cristian R; Dorado, Julian; Martin-Romalde, Raquel; Duardo-Sanchez, Aliuska; González-Diaz, Humberto.
Afiliación
  • Riera-Fernández P; Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
Curr Comput Aided Drug Des ; 7(4): 315-37, 2011 Dec.
Article en En | MEDLINE | ID: mdl-22050683
Complex Networks are useful in solving problems in drug research and industry, developing mathematical representations of different systems. These systems move in a wide range from relatively simple graph representations of drug molecular structures to large systems. We can cite for instance, drug-target protein interaction networks, drug policy legislation networks, or drug treatment in large geographical disease spreading networks. In any case, all these networks have essentially the same components: nodes (atoms, drugs, proteins, microorganisms and/or parasites, geographical areas, drug policy legislations, etc.) and edges (chemical bonds, drug-target interactions, drug-parasite treatment, drug use, etc.). Consequently, we can use the same type of numeric parameters called Topological Indices (TIs) to describe the connectivity patterns in all these kinds of Complex Networks despite the nature of the object they represent. The main reason for this success of TIs is the high flexibility of this theory to solve in a fast but rigorous way many apparently unrelated problems in all these disciplines. Another important reason for the success of TIs is that using these parameters as inputs we can find Quantitative Structure-Property Relationships (QSPR) models for different kind of problems in Computer-Aided Drug Design (CADD). Taking into account all the above-mentioned aspects, the present work is aimed at offering a common background to all the manuscripts presented in this special issue. In so doing, we make a review of the most common types of complex networks involving drugs or their targets. In addition, we review both classic TIs that have been used to describe the molecular structure of drugs and/or larger complex networks. Next, we use for the first time a Markov chain model to generalize Galvez TIs to higher order analogues coined here as the Markov-Galvez TIs of order k (MGk). Lastly, we illustrate the calculation of MGk values for different classes of networks found in drug research, nature, technology, and social-legal sciences.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades Parasitarias / Apoyo Social / Diseño de Fármacos / Sistemas de Liberación de Medicamentos / Proteoma / Redes y Vías Metabólicas / Antiparasitarios Tipo de estudio: Health_economic_evaluation / Prognostic_studies Aspecto: Determinantes_sociais_saude Límite: Animals / Humans Idioma: En Revista: Curr Comput Aided Drug Des Asunto de la revista: FARMACOLOGIA / INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: España Pais de publicación: Emiratos Árabes Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades Parasitarias / Apoyo Social / Diseño de Fármacos / Sistemas de Liberación de Medicamentos / Proteoma / Redes y Vías Metabólicas / Antiparasitarios Tipo de estudio: Health_economic_evaluation / Prognostic_studies Aspecto: Determinantes_sociais_saude Límite: Animals / Humans Idioma: En Revista: Curr Comput Aided Drug Des Asunto de la revista: FARMACOLOGIA / INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: España Pais de publicación: Emiratos Árabes Unidos