OSIS: remote sensing code for estimating aerosol optical properties in urban areas from very high spatial resolution images.
Appl Opt
; 50(28): 5408-21, 2011 Oct 01.
Article
en En
| MEDLINE
| ID: mdl-22016207
The achievement of new satellite or airborne remote sensing instruments enables the more precise study of cities with metric spatial resolutions. For studies such as the radiative characterization of urban features, knowledge of the atmosphere and particularly of aerosols is required to perform first an atmospheric compensation of the remote sensing images. However, to our knowledge, no efficient aerosol characterization technique adapted both to urban areas and to very high spatial resolution images has yet been developed. The goal of this paper is so to present a new code to characterize aerosol optical properties, OSIS, adapted to urban remote sensing images of metric spatial resolution acquired in the visible and near-IR spectral domains. First, a new aerosol characterization method based on the observation of shadow/sun transitions is presented, offering the advantage to avoid the assessment of target reflectances. Its principle and the modeling of the signal used to solve the retrieval equation are then detailed. Finally, a sensitivity study of OSIS from synthetic images simulated by the radiative transfer code AMARTIS v2 is also presented. This study has shown an intrinsic precision of this tool of Δτ(a)=0.1.τ(a) ± (0.02 + 0.4.τ(a)) for retrieval of aerosol optical thicknesses. This study shows that OSIS is a powerful tool for aerosol characterization that has a precision similar to satellite products for the aerosol optical thicknesses retrieval and that can be applied to every very high spatial resolution instrument, multispectral or hyperspectral, airborne or satellite.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Appl Opt
Año:
2011
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Estados Unidos