Your browser doesn't support javascript.
loading
A network of SCOP hidden Markov models and its analysis.
Zhang, Liqing; Watson, Layne T; Heath, Lenwood S.
Afiliación
  • Zhang L; Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA. lqzhang@cs.vt.edu
BMC Bioinformatics ; 12: 191, 2011 May 23.
Article en En | MEDLINE | ID: mdl-21635719
BACKGROUND: The Structural Classification of Proteins (SCOP) database uses a large number of hidden Markov models (HMMs) to represent families and superfamilies composed of proteins that presumably share the same evolutionary origin. However, how the HMMs are related to one another has not been examined before. RESULTS: In this work, taking into account the processes used to build the HMMs, we propose a working hypothesis to examine the relationships between HMMs and the families and superfamilies that they represent. Specifically, we perform an all-against-all HMM comparison using the HHsearch program (similar to BLAST) and construct a network where the nodes are HMMs and the edges connect similar HMMs. We hypothesize that the HMMs in a connected component belong to the same family or superfamily more often than expected under a random network connection model. Results show a pattern consistent with this working hypothesis. Moreover, the HMM network possesses features distinctly different from the previously documented biological networks, exemplified by the exceptionally high clustering coefficient and the large number of connected components. CONCLUSIONS: The current finding may provide guidance in devising computational methods to reduce the degree of overlaps between the HMMs representing the same superfamilies, which may in turn enable more efficient large-scale sequence searches against the database of HMMs.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Cadenas de Markov / Bases de Datos de Proteínas Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Cadenas de Markov / Bases de Datos de Proteínas Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido