GPU-based iterative cone-beam CT reconstruction using tight frame regularization.
Phys Med Biol
; 56(13): 3787-807, 2011 Jul 07.
Article
en En
| MEDLINE
| ID: mdl-21628778
The x-ray imaging dose from serial cone-beam computed tomography (CBCT) scans raises a clinical concern in most image-guided radiation therapy procedures. It is the goal of this paper to develop a fast graphic processing unit (GPU)-based algorithm to reconstruct high-quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight-frame (TF)-based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512 × 512 × 70 can be reconstructed in â¼5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstruct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of the modulation-transfer function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Gráficos por Computador
/
Procesamiento de Imagen Asistido por Computador
/
Tomografía Computarizada de Haz Cónico
Límite:
Humans
Idioma:
En
Revista:
Phys Med Biol
Año:
2011
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido