Your browser doesn't support javascript.
loading
A bayesian mixture model for comparative spectral count data in shotgun proteomics.
Booth, James G; Eilertson, Kirsten E; Olinares, Paul Dominic B; Yu, Haiyuan.
Afiliación
  • Booth JG; Department of Biological Statistics and Computational Biology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA. jim.booth@cornell.edu
Mol Cell Proteomics ; 10(8): M110.007203, 2011 Aug.
Article en En | MEDLINE | ID: mdl-21602509
Recent developments in mass-spectrometry-based shotgun proteomics, especially methods using spectral counting, have enabled large-scale identification and differential profiling of complex proteomes. Most such proteomic studies are interested in identifying proteins, the abundance of which is different under various conditions. Several quantitative methods have recently been proposed and implemented for this purpose. Building on some techniques that are now widely accepted in the microarray literature, we developed and implemented a new method using a Bayesian model to calculate posterior probabilities of differential abundance for thousands of proteins in a given experiment simultaneously. Our Bayesian model is shown to deliver uniformly superior performance when compared with several existing methods.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Teorema de Bayes / Proteoma / Proteínas de Saccharomyces cerevisiae / Modelos Biológicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Humans Idioma: En Revista: Mol Cell Proteomics Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Teorema de Bayes / Proteoma / Proteínas de Saccharomyces cerevisiae / Modelos Biológicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Humans Idioma: En Revista: Mol Cell Proteomics Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos