Your browser doesn't support javascript.
loading
Development of a new spatial analysis tool in mental health: identification of highly autocorrelated areas (hot-spots) of schizophrenia using a Multiobjective Evolutionary Algorithm model (MOEA/HS).
García-Alonso, Carlos R; Salvador-Carulla, Luis; Negrín-Hernández, Miguel A; Moreno-Küstner, Berta.
Afiliación
  • García-Alonso CR; ETEA, Department of Management and Quantitative Methods, University of Córdoba, Córdoba, Spain. cgarcia@etea.com
Epidemiol Psichiatr Soc ; 19(4): 302-13, 2010.
Article en En | MEDLINE | ID: mdl-21322504
AIMS: This study had two objectives: (1) to design and develop a computer-based tool, called Multi-Objective Evolutionary Algorithm/Hot-Spots (MOEA/HS), to identify and geographically locate highly autocorrelated zones or hot-spots and which merges different methods, and (2) to carry out a demonstration study in a geographical area where previous information about the distribution of schizophrenia prevalence is available and which can therefore be compared. METHODS: Local Indicators of Spatial Aggregation (LISA) models as well as the Bayesian Conditional Autoregressive Model (CAR) were used as objectives in a multicriteria framework when highly autocorrelated zones (hot-spots) need to be identified and geographically located. A Multi-Objective Evolutionary Algorithm (MOEA) model was designed and used to identify highly autocorrelated areas of the prevalence of schizophrenia in Andalusia. Hot-spots were statistically identified using exponential-based QQ-Plots (statistics of extremes). RESULTS: Efficient solutions (Pareto set) from MOEA/HS were analysed statistically and one main hot-spot was identified and spatially located. Our model can be used to identify and locate geographical hot-spots of schizophrenia prevalence in a large and complicated region. CONCLUSIONS: MOEA/HS enables a compromise to be achieved between different econometric methods by highlighting very special zones in complex areas where schizophrenia shows a high autocorrelation.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esquizofrenia / Algoritmos / Modelos Estadísticos Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies País/Región como asunto: Europa Idioma: En Revista: Epidemiol Psichiatr Soc Asunto de la revista: EPIDEMIOLOGIA / PSIQUIATRIA Año: 2010 Tipo del documento: Article País de afiliación: España Pais de publicación: Italia
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esquizofrenia / Algoritmos / Modelos Estadísticos Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies País/Región como asunto: Europa Idioma: En Revista: Epidemiol Psichiatr Soc Asunto de la revista: EPIDEMIOLOGIA / PSIQUIATRIA Año: 2010 Tipo del documento: Article País de afiliación: España Pais de publicación: Italia