Your browser doesn't support javascript.
loading
Multiple models to capture the variability in biological neurons and networks.
Marder, Eve; Taylor, Adam L.
Afiliación
  • Marder E; Biology Department, Brandeis University, Waltham, Massachusetts, USA. marder@brandeis.edu
Nat Neurosci ; 14(2): 133-8, 2011 Feb.
Article en En | MEDLINE | ID: mdl-21270780
How tightly tuned are the synaptic and intrinsic properties that give rise to neuron and circuit function? Experimental work shows that these properties vary considerably across identified neurons in different animals. Given this variability in experimental data, this review describes some of the complications of building computational models to aid in understanding how system dynamics arise from the interaction of system components. We argue that instead of trying to build a single model that captures the generic behavior of a neuron or circuit, it is beneficial to construct a population of models that captures the behavior of the population that provided the experimental data. Studying a population of models with different underlying structure and similar behaviors provides opportunities to discover unsuspected compensatory mechanisms that contribute to neuron and network function.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Neurológicos / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Neurológicos / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos