Your browser doesn't support javascript.
loading
A comparison of different dimensionality reduction and feature selection methods for single trial ERP detection.
Lan, Tian; Erdogmus, Deniz; Black, Lois; Van Santen, Jan.
Afiliación
  • Lan T; Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregan, USA.
Article en En | MEDLINE | ID: mdl-21097171
Dimensionality reduction and feature selection is an important aspect of electroencephalography based event related potential detection systems such as brain computer interfaces. In our study, a predefined sequence of letters was presented to subjects in a Rapid Serial Visual Presentation (RSVP) paradigm. EEG data were collected and analyzed offline. A linear discriminant analysis (LDA) classifier was designed as the ERP (Event Related Potential) detector for its simplicity. Different dimensionality reduction and feature selection methods were applied and compared in a greedy wrapper framework. Experimental results showed that PCA with the first 10 principal components for each channel performed best and could be used in both online and offline systems.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Electroencefalografía Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Electroencefalografía Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos