Your browser doesn't support javascript.
loading
Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli.
Zhou, Li; Zuo, Zhi-Rui; Chen, Xian-Zhong; Niu, Dan-Dan; Tian, Kang-Ming; Prior, Bernard A; Shen, Wei; Shi, Gui-Yang; Singh, Suren; Wang, Zheng-Xiang.
Afiliación
  • Zhou L; Center for Bioresource and Bioenergy, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
Curr Microbiol ; 62(3): 981-9, 2011 Mar.
Article en En | MEDLINE | ID: mdl-21086129
In order to rationally manipulate the cellular metabolism of Escherichia coli for D: -lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding D-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l D-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of D-lactate production are among the highest reported and the results have revealed which genetic manipulations improved D-lactate production by E. coli.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería Genética / Ácido Láctico / Escherichia coli / Redes y Vías Metabólicas Idioma: En Revista: Curr Microbiol Año: 2011 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería Genética / Ácido Láctico / Escherichia coli / Redes y Vías Metabólicas Idioma: En Revista: Curr Microbiol Año: 2011 Tipo del documento: Article Pais de publicación: Estados Unidos