Your browser doesn't support javascript.
loading
Tuning support vector machines for minimax and Neyman-Pearson classification.
Davenport, Mark A; Baraniuk, Richard G; Scott, Clayton D.
Afiliación
  • Davenport MA; Department of Statistics, Stanford University, 390 Serra Mall, Stanford, CA 94305, USA. md@rice.edu
IEEE Trans Pattern Anal Mach Intell ; 32(10): 1888-98, 2010 Oct.
Article en En | MEDLINE | ID: mdl-20724764
This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however, because these criteria require especially accurate error estimation, standard techniques for tuning SVM parameters, such as cross-validation, can lead to poor classifier performance. To address this issue, we first prove that the usual cost-sensitive SVM, here called the 2C-SVM, is equivalent to another formulation called the 2nu-SVM. We then exploit a characterization of the 2nu-SVM parameter space to develop a simple yet powerful approach to error estimation based on smoothing. In an extensive experimental study, we demonstrate that smoothing significantly improves the accuracy of cross-validation error estimates, leading to dramatic performance gains. Furthermore, we propose coordinate descent strategies that offer significant gains in computational efficiency, with little to no loss in performance.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Asunto de la revista: INFORMATICA MEDICA Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Asunto de la revista: INFORMATICA MEDICA Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos