Your browser doesn't support javascript.
loading
Unifying generative and discriminative learning principles.
Keilwagen, Jens; Grau, Jan; Posch, Stefan; Strickert, Marc; Grosse, Ivo.
Afiliación
  • Keilwagen J; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany. Jens.Keilwagen@ipk-gatersleben.de
BMC Bioinformatics ; 11: 98, 2010 Feb 22.
Article en En | MEDLINE | ID: mdl-20175896
BACKGROUND: The recognition of functional binding sites in genomic DNA remains one of the fundamental challenges of genome research. During the last decades, a plethora of different and well-adapted models has been developed, but only little attention has been payed to the development of different and similarly well-adapted learning principles. Only recently it was noticed that discriminative learning principles can be superior over generative ones in diverse bioinformatics applications, too. RESULTS: Here, we propose a generalization of generative and discriminative learning principles containing the maximum likelihood, maximum a posteriori, maximum conditional likelihood, maximum supervised posterior, generative-discriminative trade-off, and penalized generative-discriminative trade-off learning principles as special cases, and we illustrate its efficacy for the recognition of vertebrate transcription factor binding sites. CONCLUSIONS: We find that the proposed learning principle helps to improve the recognition of transcription factor binding sites, enabling better computational approaches for extracting as much information as possible from valuable wet-lab data. We make all implementations available in the open-source library Jstacs so that this learning principle can be easily applied to other classification problems in the field of genome and epigenome analysis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Almacenamiento y Recuperación de la Información Tipo de estudio: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2010 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Almacenamiento y Recuperación de la Información Tipo de estudio: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2010 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido