Your browser doesn't support javascript.
loading
Alkyltransferase-mediated toxicity of bis-electrophiles in mammalian cells.
Kalapila, Aley G; Pegg, Anthony E.
Afiliación
  • Kalapila AG; Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
Mutat Res ; 684(1-2): 35-42, 2010 Feb 03.
Article en En | MEDLINE | ID: mdl-19941875
The primary function of O(6)-alkylguanine-DNA alkyltransferase (AGT) is to maintain genomic integrity in the face of damage by both endogenous and exogenous alkylating agents. However, paradoxically, bacterial and mammalian AGTs have been shown to increase cytotoxicity and mutagenicity of dihaloalkanes and other bis-electrophiles when expressed in bacterial cells. We have extended these studies to mammalian cells using CHO cells that lack AGT expression and CHO cells stably transfected with a plasmid that expresses human AGT. The cytotoxicity of 1,2-dibromoethane, dibromomethane and epibromohydrin was significantly increased by the presence of AGT but cytotoxicity of butadiene diepoxide was not affected. Mutations caused by these agents were assessed using hypoxanthine-guanine phosphoribosyltransferase (HPRT) as a reporter gene. There was a small (c. 2-3-fold) but statistically significant AGT-mediated increase in mutations caused by 1,2-dibromoethane, dibromomethane and epibromohydrin. Analysis of the mutation spectrum induced by 1,2-dibromoethane showed that the presence of AGT also altered the types of mutations with an increase in total base substitution mutants due to a rise in transversions at both G:C and A:T sites. AGT expression also led to mutations arising from the transcribed strand, which were not seen in cells lacking AGT. Although the frequency of deletion mutations was decreased by AGT expression, the formation of large deletions (> or = 3 exons) was increased. This work demonstrates that interaction of AGT with some bis-electrophiles can cause mutagenicity and diminished cell survival in mammalian cells. It is consistent with the hypothesis that DNA-AGT cross-links, which have been characterized in experiments with purified AGT protein and such bis-electrophiles, can be formed in mammalian cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transferasas Alquil y Aril / Compuestos Epoxi / Hidrocarburos Bromados / Mutágenos Límite: Animals / Humans Idioma: En Revista: Mutat Res Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transferasas Alquil y Aril / Compuestos Epoxi / Hidrocarburos Bromados / Mutágenos Límite: Animals / Humans Idioma: En Revista: Mutat Res Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos