Phosphorus doped Zn(1-x)Mg(x)O nanowire arrays.
Nano Lett
; 9(11): 3877-82, 2009 Nov.
Article
en En
| MEDLINE
| ID: mdl-19757858
We demonstrate the growth of phosphorus doped Zn(1-x)Mg(x)O nanowire (NW) using pulsed laser deposition. For the first time, p-type Zn(0.92)Mg(0.08)O:P NWs are likely obtained in reference to atomic force microscopy based piezoelectric output measurements, X-ray photoelectron spectroscopy, and the transport property between the NWs and a n-type ZnO film. A shallow acceptor level of approximately 140 meV is identified by temperature-dependent photoluminescence. A piezoelectric output of 60 mV on average has been received using the doped NWs. Besides a control on NW aspect ratio and density, band gap engineering has also been achieved by alloying with Mg to a content of x = 0.23. The alloyed NWs with controllable conductivity type have potential application in high-efficiency all-ZnO NWs based LED, high-output ZnO nanogenerator, and other optical or electrical devices.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2009
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos