Your browser doesn't support javascript.
loading
Flow perfusion culture of human fetal bone cells in large beta-tricalcium phosphate scaffold with controlled architecture.
Wang, Lin; Hu, Yun-Yu; Wang, Zhen; Li, Xiang; Li, Di-Chen; Lu, Bing-Heng; Xu, Song-Feng.
Afiliación
  • Wang L; Institute of Orthopedics and Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.
J Biomed Mater Res A ; 91(1): 102-13, 2009 Oct.
Article en En | MEDLINE | ID: mdl-18767058
One unsolved problem in bone tissue engineering is how to enable the survival and proliferation of osteoblastic cells in large scaffolds. In this work, large beta-tricalcium phosphate scaffolds with tightly controlled channel architectures were fabricated and a custom-designed perfusion bioreactor was developed. Human fetal bone cells in third passage were seeded onto the scaffolds and cultured in static or flow perfusion conditions for up to 16 days. Compared with nonperfused constructs, flow perfused constructs demonstrated improved cells proliferation and differentiation according to cell viability, glucose consumption, alkaline phosphatase activity, and osteopontin. Moreover, after 16 days of perfusion culture, a homogenous layer composed of cells and mineralized matrix throughout the whole scaffold was observed by scanning electron microscopy and histological study. In contrast, cells were located only along the scaffold perimeter in static culture. These results demonstrated the feasibility and benefit of perfusion culture in conjunction with well-defined three-dimensional environment for large bone graft construction. Porous scaffold with controlled architecture can be a potential tool to evaluate the effects of scaffold specific geometry on fluid flow configuration and cell behavior under perfusion culture.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoblastos / Perfusión / Fosfatos de Calcio / Ingeniería de Tejidos / Andamios del Tejido Límite: Humans Idioma: En Revista: J Biomed Mater Res A Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2009 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoblastos / Perfusión / Fosfatos de Calcio / Ingeniería de Tejidos / Andamios del Tejido Límite: Humans Idioma: En Revista: J Biomed Mater Res A Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2009 Tipo del documento: Article Pais de publicación: Estados Unidos