Your browser doesn't support javascript.
loading
High-accuracy peptide mass fingerprinting using peak intensity data with machine learning.
Yang, Dongmei; Ramkissoon, Kevin; Hamlett, Eric; Giddings, Morgan C.
Afiliación
  • Yang D; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
J Proteome Res ; 7(1): 62-9, 2008 Jan.
Article en En | MEDLINE | ID: mdl-17914788
For MALDI-TOF mass spectrometry, we show that the intensity of a peptide-ion peak is directly correlated with its sequence, with the residues M, H, P, R, and L having the most substantial effect on ionization. We developed a machine learning approach that exploits this relationship to significantly improve peptide mass fingerprint (PMF) accuracy based on training data sets from both true-positive and false-positive PMF searches. The model's cross-validated accuracy in distinguishing real versus false-positive database search results is 91%, rivaling the accuracy of MS/MS-based protein identification.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mapeo Peptídico / Inteligencia Artificial / Espectrometría de Masas en Tándem Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mapeo Peptídico / Inteligencia Artificial / Espectrometría de Masas en Tándem Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos