High-accuracy peptide mass fingerprinting using peak intensity data with machine learning.
J Proteome Res
; 7(1): 62-9, 2008 Jan.
Article
en En
| MEDLINE
| ID: mdl-17914788
For MALDI-TOF mass spectrometry, we show that the intensity of a peptide-ion peak is directly correlated with its sequence, with the residues M, H, P, R, and L having the most substantial effect on ionization. We developed a machine learning approach that exploits this relationship to significantly improve peptide mass fingerprint (PMF) accuracy based on training data sets from both true-positive and false-positive PMF searches. The model's cross-validated accuracy in distinguishing real versus false-positive database search results is 91%, rivaling the accuracy of MS/MS-based protein identification.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Mapeo Peptídico
/
Inteligencia Artificial
/
Espectrometría de Masas en Tándem
Idioma:
En
Revista:
J Proteome Res
Asunto de la revista:
BIOQUIMICA
Año:
2008
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos