Statistical analysis of absorption spectra of phytoplankton and of pigment concentrations observed during three POMME cruises using a neural network clustering method.
Appl Opt
; 46(18): 3790-9, 2007 Jun 20.
Article
en En
| MEDLINE
| ID: mdl-17538676
We present a neural network methodology for clustering large data sets into pertinent groups. We applied this methodology to analyze the phytoplankton absorption spectra data gathered by the Laboratoire d'Océanographie de Villefranche. We first partitioned the data into 100 classes by means of a self-organizing map (SOM) and then we clustered these classes into 6 significant groups. We focused our analysis on three POMME campaigns. We were able to interpret the absorption spectra of the samples taken in the first oceanic optical layer during these campaigns, in terms of seasonal variability. We showed that spectra from the PROSOPE Mediterranean campaign, which was conducted in a different region, were strongly similar to those of the POMME-3 campaign. This analysis led us to propose regional empirical relationships, linking phytoplankton absorption spectra to pigment concentrations, that perform better than the previously derived overall relation.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Fitoplancton
/
Redes Neurales de la Computación
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Appl Opt
Año:
2007
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Estados Unidos