Your browser doesn't support javascript.
loading
Statistical analysis of absorption spectra of phytoplankton and of pigment concentrations observed during three POMME cruises using a neural network clustering method.
Chazottes, Aymeric; Crépon, Michel; Bricaud, Annick; Ras, Joséphine; Thiria, Sylvie.
Afiliación
  • Chazottes A; Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN/IPSL), Paris, France. ayclod@locean-ipsl.upmc.fr
Appl Opt ; 46(18): 3790-9, 2007 Jun 20.
Article en En | MEDLINE | ID: mdl-17538676
We present a neural network methodology for clustering large data sets into pertinent groups. We applied this methodology to analyze the phytoplankton absorption spectra data gathered by the Laboratoire d'Océanographie de Villefranche. We first partitioned the data into 100 classes by means of a self-organizing map (SOM) and then we clustered these classes into 6 significant groups. We focused our analysis on three POMME campaigns. We were able to interpret the absorption spectra of the samples taken in the first oceanic optical layer during these campaigns, in terms of seasonal variability. We showed that spectra from the PROSOPE Mediterranean campaign, which was conducted in a different region, were strongly similar to those of the POMME-3 campaign. This analysis led us to propose regional empirical relationships, linking phytoplankton absorption spectra to pigment concentrations, that perform better than the previously derived overall relation.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fitoplancton / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Appl Opt Año: 2007 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fitoplancton / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Appl Opt Año: 2007 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos