Pump-probe spectroscopy with phase-locked pulses in the condensed phase: decoherence and control of vibrational wavepackets.
Phys Chem Chem Phys
; 7(17): 3143-9, 2005 Sep 07.
Article
en En
| MEDLINE
| ID: mdl-16240025
Electronic and vibrational coherences of Cl2 embedded in solid Ar are investigated by exciting to the B state with a phase-locked pulse pair from an unbalanced Michelson interferometer, where the chirp difference matches the B state anharmonicity. Recording the A' --> X fluorescence after relaxation is compared to probing to charge transfer states by a third pulse. The three-pulse experiment delivers more details on the decoherence processes. The signal modulation due to phase tuning up to the third vibrational round-trip time indicates that the electronic coherence in the B <-- X transition is preserved for more than 660 fs in the solid Ar environment where many body electronic interactions take place. Vibrational coherence lasts longer than 3 ps according to the observed half revival of the wavepacket. Control of the coupling between wavepacket motion and lattice oscillation is demonstrated by tuning the relative phase between the phase-locked pulses, preparing wavepackets predominantly composed of either zero-phonon lines or phonon side bands.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2005
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Reino Unido