Analysis of one-dimensional pure-exchange NMR experiments for studying dynamics with broad distributions of correlation times.
J Chem Phys
; 122(15): 154506, 2005 Apr 15.
Article
en En
| MEDLINE
| ID: mdl-15945644
One-dimensional (1D) exchange NMR experiments can elucidate the geometry, time scale, memory, and heterogeneity of slow molecular motions (1 ms-1 s) in solids. The one-dimensional version of pure-exchange (PUREX) solid-state exchange NMR, which is applied to static samples and uses the chemical shift anisotropy as a probe for molecular motion, is particularly promising and convenient in applications where site resolution is not a problem, i.e., in systems with few chemical sites. In this work, some important aspects of the 1D PUREX experiment applied to systems with complex molecular motions are analyzed. The influence of intermediate-regime (10 micros-1 ms) motions and of the distribution of reorientation angles on the pure-exchange intensity are discussed, together with a simple method for estimating the activation energy of motions occurring with a single correlation time. In addition, it is demonstrated that detailed information on the motional geometry can be obtained from 1D PUREX spectral line shapes. Experiments on a molecular crystal, dimethyl sulfone, confirm the analysis quantitatively. In two amorphous polymers, atactic polypropylene (aPP) and polyisobutylene (PIB), which differ only by one methyl group in the repeat unit, the height of the normalized exchange intensity clearly reveals a striking difference in the width of the distribution of correlation times slightly above the glass transition. The aPP shows the broad distribution and Williams-Landel-Ferry temperature dependence of correlation times typical of polymers and other "fragile" glass formers. In contrast, the dynamics in PIB occur essentially with a single correlation time and exhibits Arrhenius behavior, which is more typical of "strong" glass formers; this is somewhat surprising given the weak intermolecular forces in PIB.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Chem Phys
Año:
2005
Tipo del documento:
Article
País de afiliación:
Brasil
Pais de publicación:
Estados Unidos