Your browser doesn't support javascript.
loading
De novo prediction of three-dimensional structures for major protein families.
Bonneau, Richard; Strauss, Charlie E M; Rohl, Carol A; Chivian, Dylan; Bradley, Phillip; Malmström, Lars; Robertson, Tim; Baker, David.
Afiliación
  • Bonneau R; Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.
J Mol Biol ; 322(1): 65-78, 2002 Sep 06.
Article en En | MEDLINE | ID: mdl-12215415
We use the Rosetta de novo structure prediction method to produce three-dimensional structure models for all Pfam-A sequence families with average length under 150 residues and no link to any protein of known structure. To estimate the reliability of the predictions, the method was calibrated on 131 proteins of known structure. For approximately 60% of the proteins one of the top five models was correctly predicted for 50 or more residues, and for approximately 35%, the correct SCOP superfamily was identified in a structure-based search of the Protein Data Bank using one of the models. This performance is consistent with results from the fourth critical assessment of structure prediction (CASP4). Correct and incorrect predictions could be partially distinguished using a confidence function based on a combination of simulation convergence, protein length and the similarity of a given structure prediction to known protein structures. While the limited accuracy and reliability of the method precludes definitive conclusions, the Pfam models provide the only tertiary structure information available for the 12% of publicly available sequences represented by these large protein families.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Mol Biol Año: 2002 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Mol Biol Año: 2002 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos