Deterministic walks in random media.
Phys Rev Lett
; 87(1): 010603, 2001 Jul 02.
Article
en En
| MEDLINE
| ID: mdl-11461455
Deterministic walks over a random set of N points in one and two dimensions ( d = 1,2) are considered. Points ("cities") are randomly scattered in R(d) following a uniform distribution. A walker ("tourist"), at each time step, goes to the nearest neighbor city that has not been visited in the past tau steps. Each initial city leads to a different trajectory composed of a transient part and a final p-cycle attractor. Transient times (for d = 1,2) follow an exponential law with a tau-dependent decay time but the density of p cycles can be approximately described by D(p)proportional to p(-alpha(tau)). For tau>>1 and tau/N<<1, the exponent is independent of tau. Some analytical results are given for the d = 1 case.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Clinical_trials
Idioma:
En
Revista:
Phys Rev Lett
Año:
2001
Tipo del documento:
Article
País de afiliación:
Brasil
Pais de publicación:
Estados Unidos