Your browser doesn't support javascript.
loading
Activity of nitric oxide synthase in the ventilatory muscle vasculature.
Hussain, S N.
Afiliación
  • Hussain SN; Department of Medicine, Royal Victoria Hospital and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada. SHUSSAIN@RVHMED.LAN.MCGILL.CA
Comp Biochem Physiol A Mol Integr Physiol ; 119(1): 191-201, 1998 Jan.
Article en En | MEDLINE | ID: mdl-11253785
We evaluated in the in situ vascularly isolated canine diaphragm the role of nitric oxide (NO) in the regulation of basal vascular resistance and vascular responses to increased muscle activity (active hyperemia), brief occlusions of the phrenic artery (reactive hyperemia), and changes in arterial pressure. The vasculature of the left hemidiaphragm was either pump-perfused at a fixed flow rate or autoperfused with arterial blood from the femoral artery. Endothelial nitric oxide synthase (NOS) activity was inhibited by intraphrenic infusion of L-arginine analogues such as N(G)-nitro-L-arginine, N(G)-nitro-L-arginine methyl ester and argininosuccinic acid. Active hyperemia was produced by low (2 Hz) frequency stimulation of the left phrenic nerve. Reactive hyperemia was measured in response to 10, 20, 30, 60, and 120 sec duration occlusions of the left phrenic artery and was quantified in terms of postocclusive blood flow, vascular resistance, hyperemic duration, and hyperemic volume. Infusion of NOS inhibitors into the vasculature of the resting diaphragm increased phrenic vascular resistance significantly and to a similar extent. Reactive hyperemic volume and reactive hyperemic duration were also significantly attenuated after NOS inhibition, however, peak reactive hyperemic dilation was not influenced by NOS inhibition. It was also found that enhanced NO release contribute by about 41% to active dilation elicited by continuous 2 Hz stimulation. In addition, NOS inhibition had no effect on O2 consumption of the resting diaphragm, but significantly attenuated the rise in diaphragmatic O2 consumption during during 2 Hz stimulation. The decline in diaphragmatic O2 consumption was due to reduction in blood flow. These results indicate that NO release plays a significant role in the regulation of diaphragmatic vascular tone and O2 consumption.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculos Respiratorios / Óxido Nítrico Sintasa Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 1998 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculos Respiratorios / Óxido Nítrico Sintasa Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 1998 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos