Serine and glycine transport in fetal ovine hepatocytes.
Biochim Biophys Acta
; 1474(1): 41-6, 2000 Mar 06.
Article
en En
| MEDLINE
| ID: mdl-10699488
The role of hepatic serine and glycine transport in the regulation of the biosynthesis of serine by the fetal liver has not been studied. The goal of this study was to characterize serine and glycine transport and utilization at physiologic concentrations in primary cultures of fetal ovine hepatocytes. Primary culture of hepatocytes from mid gestation ( approximately 90 days) and term ( approximately 135 days) fetal sheep were studied after overnight serum free culture. At both gestational ages, the initial rate for sodium dependent 300 microM serine transport (1697+/-131 pmoles/min/mg protein at mid, 1765+/-544 at term) was fourfold greater than sodium dependent 300 microM glycine transport (309+/-54 at mid, 579+/-252 at term). At physiologic concentrations (300 microM), 69+/-7% of serine and 49+/-8% of glycine transport was sodium dependent. At term, sodium dependent serine transport has a V(max) of 1751+/-348 pmoles/min/mg protein and a K(m) of 159+/-111 microM. Sodium independent serine transport has a V(max) of 904+/-185 and a K(m) of 416+/-188 microM. Sodium dependent glycine transport has a V(max) of 410+/-69 and a K(m) of 2290+/-895 microM while sodium independent glycine transport exhibits non-saturable kinetics. Glycine (300 microM) sodium dependent transport was not inhibited by methyl-AIB while sodium dependent 300 microM serine transport was inhibited (31%). n-Ethylmaleimide inhibited sodium dependent serine and glycine transport by 36+/-9% and 37+/-2% respectively in term hepatocytes. Cysteine inhibited sodium dependent serine transport by 37%. Sodium independent glycine transport at 300 microM was higher in low glucose (1.1 mM) medium (881+/-76 pmoles/min/mg protein) compared to high glucose (5.5 mM) medium (510+/-60 P=0.004). There were no significant differences in serine or glycine incorporation into RNA, DNA, glycogen or lipid and protein. The predominance of serine transport over glycine at physiologic concentrations suggests that inward cellular amino acid transport of serine and glycine is not likely to be a regulatory mechanism that would favor serine biosynthesis in fetal ovine hepatocytes.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Serina
/
Glicina
/
Hígado
Límite:
Animals
Idioma:
En
Revista:
Biochim Biophys Acta
Año:
2000
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Países Bajos