Your browser doesn't support javascript.
loading
Statistical models for longitudinal biomarkers of disease onset.
Slate, E H; Turnbull, B W.
Afiliación
  • Slate EH; School of Operations Research and Industrial Engineering and Department of Statistical Science, Cornell University, Ithaca, NY 14853-3801, USA. slate@orie.cornell.edu
Stat Med ; 19(4): 617-37, 2000 Feb 29.
Article en En | MEDLINE | ID: mdl-10694740
We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biomarcadores / Modelos Estadísticos Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans / Male Idioma: En Revista: Stat Med Año: 2000 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biomarcadores / Modelos Estadísticos Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans / Male Idioma: En Revista: Stat Med Año: 2000 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido