Your browser doesn't support javascript.
loading
Identification of novel biomarkers with potential for diagnosis and prognosis of gastric cancer: a bioinformatics approach
Rossetto, Marcos Vinicius; Abreu, Fernanda Pessi de; Casa, Pedro Lenz; Sartor, Ivaine Tais Sauthier; Silva, Scheila de Avila e.
Afiliación
  • Rossetto, Marcos Vinicius; Universidade de Caxias do Sul. Instituto de Biotecnologia. Laboratório de Biologia Computacional e Bioinformática. Caxias do Sul. BR
  • Abreu, Fernanda Pessi de; Universidade de Caxias do Sul. Instituto de Biotecnologia. Laboratório de Biologia Computacional e Bioinformática. Caxias do Sul. BR
  • Casa, Pedro Lenz; Universidade de Caxias do Sul. Instituto de Biotecnologia. Laboratório de Biologia Computacional e Bioinformática. Caxias do Sul. BR
  • Sartor, Ivaine Tais Sauthier; Hospital Moinhos de Vento. Porto Alegre. BR
  • Silva, Scheila de Avila e; Universidade de Caxias do Sul. Instituto de Biotecnologia. Laboratório de Biologia Computacional e Bioinformática. Caxias do Sul. BR
ABCS health sci ; 48: e023227, 14 fev. 2023.
Article en En | LILACS | ID: biblio-1518568
Biblioteca responsable: BR1342.1
Ubicación: BR1342.1
ABSTRACT

INTRODUCTION:

Gastric cancer (GC) is the fifth most diagnosed neoplasia and the third leading cause of cancer-related deaths. A substantial number of patients exhibit an advanced GC stage once diagnosed. Therefore, the search for biomarkers contributes to the improvement and development of therapies.

OBJECTIVE:

This study aimed to identify potential GC biomarkers making use of in silico tools.

METHODS:

Gastric tissue microarray data available in Gene Expression Omnibus and The Cancer Genome Atlas Program was extracted. We applied statistical tests in the search for differentially expressed genes between tumoral and non-tumoral adjacent tissue samples. The selected genes were submitted to an in-house tool for analyses of functional enrichment, survival rate, histological and molecular classifications, and clinical follow-up data. A decision tree analysis was performed to evaluate the predictive power of the potential biomarkers.

RESULTS:

In total, 39 differentially expressed genes were found, mostly involved in extracellular structure organization, extracellular matrix organization, and angiogenesis. The genes SLC7A8, LY6E, and SIDT2 showed potential as diagnostic biomarkers considering the differential expression results coupled with the high predictive power of the decision tree models. Moreover, GC samples showed lower SLC7A8 and SIDT2 expression, whereas LY6E was higher. SIDT2 demonstrated a potential prognostic role for the diffuse type of GC, given the higher patient survival rate for lower gene expression.

CONCLUSION:

Our study outlines novel biomarkers for GC that may have a key role in tumor progression. Nevertheless, complementary in vitro analyses are still needed to further support their potential.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: LILACS Asunto principal: Neoplasias Gástricas / Biomarcadores de Tumor / Biología Computacional Idioma: En Revista: ABCS health sci Asunto de la revista: MEDICINA / SAUDE PUBLICA Año: 2023 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Brasil

Texto completo: 1 Colección: 01-internacional Base de datos: LILACS Asunto principal: Neoplasias Gástricas / Biomarcadores de Tumor / Biología Computacional Idioma: En Revista: ABCS health sci Asunto de la revista: MEDICINA / SAUDE PUBLICA Año: 2023 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Brasil