Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.432
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109637

RESUMO

Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.


Assuntos
Calcitonina , Linhagem da Célula , Ciona intestinalis , Endoderma , Crista Neural , Células Neuroendócrinas , Animais , Endoderma/metabolismo , Endoderma/citologia , Calcitonina/metabolismo , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/citologia , Ciona intestinalis/metabolismo , Ciona intestinalis/embriologia , Crista Neural/metabolismo , Crista Neural/citologia , Embrião de Galinha , Camundongos , Vertebrados/embriologia , Vertebrados/metabolismo , Peixe-Zebra/embriologia , Anfioxos/embriologia , Anfioxos/metabolismo , Anfioxos/genética , Corpo Ultimobranquial/metabolismo
2.
Arch Biochem Biophys ; 760: 110136, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182750

RESUMO

The TEAD transcription factors are the final effectors of the Hippo pathway, and to exert their transcriptional activity they need to interact with other proteins. The three paralogous vestigial-like proteins VGLL1, VGLL2 and VGLL3 bind to TEAD via a conserved short linear sequence, the Tondu motif. The TEAD-binding domain of human VGLL2 contains in addition an Ω-loop, which is also present in Vg (vestigial) from arthropods and the YAP proteins, another family of TEAD interactors. In this report, using the available structural data, we study the amino acid sequence of the TEAD-binding domain of more than 2400 putative VGLL proteins from vertebrates. This analysis shows a strong link between sequence conservation and functional role for the residues from the Tondu motif. It also reveals that one protein sequence containing both a Tondu motif and an Ω-loop is present in most (if not all) vertebrate species. This suggests that there is a selective pressure to keep a VGLL paralog with a functional Ω-loop in vertebrates. Finally, this study identifies, particularly in mammals, variants of VGLL2 and VGLL3 with an altered TEAD-binding domain suggesting that they may have a different biological function than their homologs.


Assuntos
Sequência de Aminoácidos , Fatores de Transcrição , Vertebrados , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Humanos , Vertebrados/metabolismo , Vertebrados/genética , Domínios Proteicos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ligação Proteica
3.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39167089

RESUMO

Animal body plans are established during embryonic development by the Hox genes. This patterning process relies on the differential expression of Hox genes along the head-to-tail axis. Hox spatial collinearity refers to the relationship between the organization of Hox genes in clusters and the differential Hox expression, whereby the relative order of the Hox genes within a cluster mirrors the spatial sequence of expression in the developing embryo. In vertebrates, the cluster organization is also associated with the timing of Hox activation, which harmonizes Hox expression with the progressive emergence of axial tissues. Thereby, in vertebrates, Hox temporal collinearity is intimately linked to Hox spatial collinearity. Understanding the mechanisms contributing to Hox temporal and spatial collinearity is thus key to the comprehension of vertebrate patterning. Here, we provide an overview of the main discoveries pertaining to the mechanisms of Hox spatial-temporal collinearity.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Vertebrados , Humanos , Animais , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/metabolismo , Análise Espacial , Genes Homeobox , Família Multigênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Inativação Gênica
4.
J Membr Biol ; 257(3-4): 215-230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970681

RESUMO

Progesterone (P4) acts as a key conserved signalling molecule in vertebrate reproduction. P4 is especially important for mature sperm physiology and subsequent reproductive success. "CatSpermasome", a multi-unit molecular complex, has been suggested to be the main if not the only P4-responsive atypical Ca2+-ion channel present in mature sperm. Altogether, here we analyse the protein sequences of CatSper1-4 from more than 500 vertebrates ranging from early fishes to humans. CatSper1 becomes longer in mammals due to sequence gain mainly at the N-terminus. Overall the conservation of full-length CatSper1-4 as well as the individual TM regions remain low. The lipid-water-interface residues (i.e. a 5 amino acid stretch sequence present on both sides of each TM region) also remain highly diverged. No specific patterns of amino acid distributions were observed. The total frequency of positively charged, negatively charged or their ratios do not follow in any specific pattern. Similarly, the frequency of total hydrophobic, total hydrophilic residues or even their ratios remain random and do not follow any specific pattern. We noted that the CatSper1-4 genes are missing in amphibians and the CatSper1 gene is missing in birds. The high variability of CatSper1-4 and gene-loss in certain clades indicate that the "CatSpermasome" is not the only P4-responsive ion channel. Data indicate that the molecular evolution of CatSper is mostly guided by diverse hydrophobic ligands rather than only P4. The comparative data also suggest possibilities of other Ca2+-channel/s in vertebrate sperm that can also respond to P4.


Assuntos
Canais de Cálcio , Progesterona , Espermatozoides , Masculino , Animais , Espermatozoides/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/química , Progesterona/metabolismo , Humanos , Vertebrados/genética , Vertebrados/metabolismo , Sequência de Aminoácidos , Sequência Conservada
5.
Mol Cell Endocrinol ; 592: 112324, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38944371

RESUMO

Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.


Assuntos
Evolução Molecular , Neuropeptídeos , Receptores de Neuropeptídeos , Vertebrados , Animais , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Vertebrados/genética , Vertebrados/metabolismo , Anfioxos/genética , Anfioxos/metabolismo , Filogenia , Humanos , Evolução Biológica , Transdução de Sinais
6.
Bone ; 185: 117112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697384

RESUMO

This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.


Assuntos
Calcificação Fisiológica , Mitocôndrias , Vertebrados , Animais , Mitocôndrias/metabolismo , Humanos , Calcificação Fisiológica/fisiologia , Vertebrados/metabolismo , Cálcio/metabolismo , Fosfatos/metabolismo
7.
Dev Cell ; 59(14): 1892-1911.e13, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38810654

RESUMO

Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.


Assuntos
Envelhecimento , Agregados Proteicos , Animais , Envelhecimento/metabolismo , Humanos , Proteostase , Especificidade de Órgãos , Vertebrados/metabolismo , Agregação Patológica de Proteínas/metabolismo , Progéria/metabolismo , Progéria/genética , Progéria/patologia
8.
Toxicol Lett ; 396: 48-69, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677566

RESUMO

Pollution from microplastics (MPs) and nanoplastics (NPs) has gained significant public attention and has become a serious environmental problem worldwide. This review critically investigates MPs/NPs' ability to pass through biological barriers in vertebrate models and accumulate in various organs, including the brain. After accumulation, these particles can alter individuals' behaviour and exhibit toxic effects by inducing oxidative stress or eliciting an inflammatory response. One major concern is the possibility of transgenerational harm, in which toxic consequences are displayed in offspring who are not directly exposed to MPs/NPs. Due to their large and marked surface hydrophobicity, these particles can easily absorb and concentrate various environmental pollutants, which may increase their toxicity to individuals and subsequent generations. This review systematically provides an analysis of recent studies related to the toxic effects of MPs/NPs, highlighting the intricate interplay between co-contaminants in vitro and in vivo. We further delve into mechanisms of MPs/NPs-induced toxicity and provide an overview of potential therapeutic approaches to lessen the negative effects of these MPs/NPs. The review also emphasizes the urgency of future studies to examine the long-term effects of chronic exposure to MPs/NPs and their size- and type-specific hazardous dynamics, and devising approaches to safeguard the affected organisms.


Assuntos
Microplásticos , Nanopartículas , Microplásticos/toxicidade , Animais , Nanopartículas/toxicidade , Humanos , Comportamento Animal/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , Medição de Risco , Vertebrados/metabolismo
9.
Curr Biol ; 34(7): R271-R272, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593768

RESUMO

Taste is a sense that detects information about nutrients and toxins in foods. Of the five basic taste qualities, bitterness is associated with the detection of potentially harmful substances like plant alkaloids. In bony vertebrates, type 2 taste receptors (T2Rs), which are G-protein-coupled receptors (GPCRs), act as bitter taste receptors1,2. In vertebrates, six GPCR gene families are described as chemosensory receptor genes, encoding taste receptor families (T1Rs and T2Rs) and olfactory receptor families (ORs, V1Rs, V2Rs, and TAARs). These families of receptors have been found in all major jawed vertebrate lineages, except for the T2Rs, which are confined to bony vertebrates3. Therefore, T2Rs are believed to have emerged later than the other chemosensory receptor genes in the bony vertebrate lineage. So far, only the genomes of two cartilaginous fish species have been mined for TAS2R genes, which encode T2Rs4. Here, we identified novel T2Rs in elasmobranchs, namely selachimorphs (sharks) and batoids (rays, skates, and their close relatives) by an exhaustive search covering diverse cartilaginous fishes. Using functional and mRNA expression analyses, we demonstrate that their T2Rs are expressed in the oral taste buds and contribute to the detection of bitter compounds. This finding indicates the early origin of T2Rs in the common ancestor of jawed vertebrates.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Animais , Paladar/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Evolução Biológica , Peixes/genética , Percepção Gustatória
10.
Sci Rep ; 14(1): 7690, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565870

RESUMO

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Assuntos
Ciona intestinalis , Animais , Humanos , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Células HEK293 , Transdução de Sinais , Vertebrados/metabolismo , Proteínas de Transporte/metabolismo
11.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553567

RESUMO

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Estações do Ano , Reprodução/fisiologia , Vertebrados/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tireotropina/metabolismo
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220511, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310932

RESUMO

Thyroid hormones (TH) are central hormonal regulators, orchestrating gene expression and complex biological processes vital for growth and reproduction in variable environments by triggering specific developmental processes in response to external cues. TH serve distinct roles in different species: inducing metamorphosis in amphibians or teleost fishes, governing metabolic processes in mammals, and acting as effectors of seasonality. These multifaceted roles raise questions about the underlying mechanisms of TH action. Recent evidence suggests a shared ecological role of TH across vertebrates, potentially extending to a significant portion of bilaterian species. According to this model, TH ensure that ontogenetic transitions align with environmental conditions, particularly in terms of energy expenditure, helping animals to match their ontogenetic transition with available resources. This alignment spans post-embryonic developmental transitions common to all vertebrates and more subtle adjustments during seasonal changes. The underlying logic of TH function is to synchronize transitions with the environment. This review briefly outlines the fundamental mechanisms of thyroid signalling and shows various ways in which animals use this hormonal system in natural environments. Lastly, we propose a model linking TH signalling, environmental conditions, ontogenetic trajectory and metabolism. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Receptores dos Hormônios Tireóideos , Hormônios Tireóideos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Vertebrados/metabolismo , Peixes/metabolismo , Anfíbios/metabolismo , Mamíferos/metabolismo
13.
Gen Comp Endocrinol ; 350: 114477, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387532

RESUMO

Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.


Assuntos
Gonadotropinas , Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Peixes/metabolismo , Mamíferos/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
14.
Fish Shellfish Immunol ; 146: 109413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311092

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.


Assuntos
Hepcidinas , Lampreias , Animais , Lampreias/genética , Lampreias/metabolismo , Hepcidinas/genética , Sequência de Aminoácidos , Cisteína , Proteínas de Peixes/química , Vertebrados/metabolismo , Peptídeos/genética , Antibacterianos/farmacologia , Filogenia
15.
Proc Natl Acad Sci U S A ; 121(6): e2313853121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285949

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.


Assuntos
Receptores Ionotrópicos de Glutamato , Vertebrados , Animais , Receptores Ionotrópicos de Glutamato/metabolismo , Vertebrados/metabolismo , Receptores de AMPA/genética , Invertebrados , Mamíferos/metabolismo , N-Metilaspartato , Neurotransmissores , Ácido gama-Aminobutírico
16.
Mol Neurobiol ; 61(1): 358-371, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37607992

RESUMO

Neuronal synaptic junctions connect neurons to enable neuronal signal transmission in the nervous system. The proper establishment of synaptic connections required many adhesion molecules. Malfunctions of these adhesion molecules can result in neural development disorders and neuropsychiatric disorders. How specific synapses are established by various adhesion molecules for proper neural circuitry is a fundamental question of neuroscience. SynCAMs, also named CADMs, Necl, etc., are among the many adhesion proteins found in synapses. Here, we review the current understanding of the physical properties of SynCAMs and their roles in axon pathfinding, myelination, synaptogenesis, and synaptic plasticity. In addition, we discuss the involvement of SynCAMs in neuropsychiatric disorders. Finally, we propose that SynCAM functions can be better viewed and understood from the perspective of orientational cell adhesions (OCAs). In particular, we discuss the possibilities of how SynCAMs can be regulated at the cell-type specific expression, transcription variants, posttranslational modification, and subcellular localization to modulate the diversity of SynCAMs as OCA molecules. Being major components of the synapses, SynCAMs continue to be an important research topic of neuroscience, and many outstanding questions are waiting to be answered.


Assuntos
Moléculas de Adesão Celular , Neurogênese , Animais , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Sinapses/metabolismo , Vertebrados/metabolismo
17.
Geobiology ; 22(1): e12577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37750460

RESUMO

Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635-560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957-1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.


Assuntos
Oxigênio , Vertebrados , Animais , Oxigênio/metabolismo , Teorema de Bayes , Vertebrados/metabolismo , Hipóxia , Filogenia , Evolução Biológica , Fósseis
18.
Fish Physiol Biochem ; 49(6): 1511-1525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982969

RESUMO

The pineal hormone melatonin is a multi-functional molecule with a recognized role in pigment aggregation in chromatophores, mediating its actions through binding to subtypes of its specific receptors. Since its discovery, melatonin has been known to be responsible for pigment aggregation towards the cell centre in fishes, including their embryos, as an adaptation to reduced light and thus results in pale body colouration. Diversity exists in the sensitivity of melanophores towards melatonin at interspecies, intraspecific levels, seasons, and amongst chromatophores at different regions of the animal body. In most of the fishes, melatonin leads to their skin paling at night. It is indicated that the melatonin receptors have characteristically maintained to show the same aggregating effects in fishes and other vertebrates in the evolutionary hierarchy. However, besides this aggregatory effect, melatonin is also responsible for pigment dispersion in certain fishes. Here is the demand in our review to explore further the nature of the dispersive behaviour of melatonin through the so-called ß-melatonin receptors. It is clear that the pigment translocations in lower vertebrates under the effect of melatonin are mediated through the melatonin receptors coupled with other hormonal receptors as well. Therefore, being richly supplied with a variety of receptors, chromatophores and melanocytes can be used as in vitro test models for pharmacological applications of known and novel drugs. In this review, we present diverse effects of melatonin on chromatophores of fishes in particular with appropriate implications on most of the recent findings.


Assuntos
Cromatóforos , Melatonina , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Receptores de Melatonina/metabolismo , Peixes/metabolismo , Melanóforos , Vertebrados/metabolismo
19.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37850912

RESUMO

A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Homeodomínio , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Imunidade Adaptativa/genética
20.
Commun Biol ; 6(1): 1054, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853054

RESUMO

Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.


Assuntos
Ritmo Circadiano , Opsinas de Bastonetes , Animais , Ritmo Circadiano/fisiologia , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Vertebrados/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA