Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.467
Filtrar
1.
Methods Mol Biol ; 2854: 153-170, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192127

RESUMO

cGAS is a key cytosolic dsDNA receptor that senses viral infection and elicits interferon production through the cGAS-cGAMP-STING axis. cGAS is activated by dsDNA from viral and bacterial origins as well as dsDNA leaked from damaged mitochondria and nucleus. Eventually, cGAS activation launches the cell into an antiviral state to restrict the replication of both DNA and RNA viruses. Throughout the long co-evolution, viruses devise many strategies to evade cGAS detection or suppress cGAS activation. We recently reported that the Dengue virus protease NS2B3 proteolytically cleaves human cGAS in its N-terminal region, effectively reducing cGAS binding to DNA and consequent production of the second messenger cGAMP. Several other RNA viruses likely adopt the cleavage strategy. Here, we describe a protocol for the purification of recombinant human cGAS and Dengue NS2B3 protease, as well as the in vitro cleavage assay.


Assuntos
Vírus da Dengue , Nucleotidiltransferases , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Proteólise , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Nucleotídeos Cíclicos/metabolismo , Dengue/virologia , Dengue/metabolismo
2.
J Med Virol ; 96(9): e29895, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228306

RESUMO

Dengue viruses are the causative agents of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, which are mainly transmitted by Aedes aegypti and Aedes albopictus mosquitoes, and cost billions of dollars annually in patient treatment and mosquito control. Progress in understanding DENV pathogenesis and developing effective treatments has been hampered by the lack of a suitable small pathological animal model. Until now, the candidate vaccine, antibody, and drug for DENV have not been effectively evaluated. Here, we analyzed the pathogenicity of DENV-1 in type Ⅰ and type Ⅱ interferon receptor-deficient mice (AGB6) by intraperitoneal inoculation. Infected mice showed such neurological symptoms as opisthotonus, hunching, ataxia, and paralysis of one or both hind limbs. Viremia can be detected 3 days after infection. It was found that 6.98 × 103 PFU or higher dose induce 100% mortality. To determine the cause of lethality in mice, heart, liver, spleen, lung, kidney, intestinal, and brain tissues were collected from AGB6 mice (at an attack dose of 6.98 × 103 PFU) for RNA quantification, and it was found that the viral load in brain tissues peaked at moribund states (14 dpi) and that the viral loads in the other tissues and organs decreased over time. Significant histopathologic changes were observed in brain tissue (hippocampal region and cerebral cortex). Hematological analysis showed hemorrhage and hemoconcentration in infected mice. DENV-1 can be isolated from the brain tissue of infected mice. Subsequently, brain tissue transcriptome sequencing was performed to assess host response characteristics in infected AGB6 mice. Transcriptional patterns in brain tissue suggest that aberrant expression of pro-inflammatory cytokines induces antiviral responses and tissue damage. Screening of hub genes and their characterization by qPCR and ELISA, it was hypothesized that IL-6 and IFN-γ might be the key factors in dengue virus-induced inflammatory response. Therefore, this study provides an opportunity to decipher certain aspects of dengue pathogenesis further and provides a new platform for drug, antibody, and vaccine testing.


Assuntos
Vírus da Dengue , Dengue , Modelos Animais de Doenças , Transcriptoma , Carga Viral , Animais , Vírus da Dengue/patogenicidade , Vírus da Dengue/genética , Dengue/virologia , Dengue/imunologia , Camundongos , Sorogrupo , Perfilação da Expressão Gênica , Encéfalo/virologia , Encéfalo/patologia , Virulência , Viremia , Camundongos Knockout
3.
Virol J ; 21(1): 215, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261951

RESUMO

BACKGROUND: Dengue virus (DENV) causes the most significant mosquito-borne viral disease with a wide spectrum of clinical manifestation, including neurological symptoms associated with lethal dengue diseases. Dopamine receptors are expressed in central nervous system, and dopamine antagonists have been reported to exhibit antiviral activity against DENV infection in vivo and in vitro. Although identification of host-cell receptor is critical to understand dengue neuropathogenesis and neurotropism, the involvement of dopamine receptors in DENV infection remains unclear. RESULTS: We exploited the sensitivity and precision of force spectroscopy to address whether dopamine type-2 receptors (D2R) directly interact with DENV particles at the first step of infection. Using optical tweezers, we quantified and characterized DENV binding to D2R expressed on Chinese hamster ovary (CHO) cells. Our finding suggested that the binding was D2R- and DENV-dependent, and that the binding force was in the range of 50-60 pN. We showed that dopamine antagonists prochlorperazine (PCZ) and trifluoperazine (TFP), previously reported to inhibit dengue infection, interrupt the DENV-D2R specific binding. CONCLUSIONS: This study demonstrates that D2R could specifically recognize DENV particles and function as an attachment factor on cell surfaces for DENV. We propose D2R as a host receptor for DENV and as a potential therapeutic target for anti-DENV drugs.


Assuntos
Cricetulus , Vírus da Dengue , Pinças Ópticas , Receptores de Dopamina D2 , Receptores de Dopamina D2/metabolismo , Vírus da Dengue/fisiologia , Vírus da Dengue/efeitos dos fármacos , Animais , Células CHO , Dengue/virologia , Ligação Proteica , Humanos , Ligação Viral/efeitos dos fármacos , Cricetinae , Antagonistas de Dopamina/farmacologia
4.
BMC Infect Dis ; 24(1): 944, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251932

RESUMO

BACKGROUND: For decades, dengue has posed a significant threat as a viral infectious disease, affecting numerous human lives globally, particularly in tropical regions, yet no cure has been discovered. The genetic trait of vector competence in Aedes mosquitoes, which facilitates dengue transmission, is difficult to measure and highly sensitive to environmental changes. METHODS: In this study we attempt, for the first time in a non-laboratory setting, to quantify the vector competence of Aedes mosquitoes assuming its homogeneity across both species; aegypti and albopictus and across the four Dengue serotypes. Estimating vector competence in relation to varying rainfall patterns was focused in this study to showcase the changes in this vector trait with respect to environmental variables. We quantify it using an existing mathematical model originally developed for malaria in a Bayesian inferencing setup. We conducted this study in the Colombo district of Sri Lanka where the highest number of human populations are threatened with dengue. Colombo district experiences continuous favorable temperature and humidity levels throughout the year creating ideal conditions for Aedes mosquitoes to thrive and transmit the Dengue disease. Therefore we only used the highly variable and seasonal rainfall as the primary environmental variable as it significantly influences the number of breeding sites and thereby impacting the population dynamics of Aedes. RESULTS: Our research successfully deduced vector competence values for the four identified seasons based on Monsoon rainfalls experienced in Colombo within a year. We used dengue data from 2009 - 2022 to infer the estimates. These estimated values have been corroborated through experimental studies documented in the literature, thereby validating the malaria model to estimate vector competence for dengue disease. CONCLUSION: Our research findings conclude that environmental conditions can amplify vector competence within specific seasons, categorized by their environmental attributes. Additionally, the deduced vector competence offers compelling evidence that it impacts disease transmission, irrespective of geographical location, climate, or environmental factors.


Assuntos
Aedes , Vírus da Dengue , Dengue , Mosquitos Vetores , Animais , Aedes/virologia , Aedes/genética , Sri Lanka/epidemiologia , Dengue/transmissão , Dengue/virologia , Dengue/epidemiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Humanos , Vírus da Dengue/genética , Chuva
5.
J Biomed Sci ; 31(1): 86, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232783

RESUMO

BACKGROUND: While dengue NS1 antigen has been shown to be associated with disease pathogenesis in some studies, it has not been linked in other studies, with the reasons remaining unclear. NS1 antigen levels in acute dengue are often associated with increased disease severity, but there has been a wide variation in results based on past dengue infection and infecting dengue virus (DENV) serotype. As NS1 engages with many host lipids, we hypothesize that the type of NS1-lipid interactions alters its pathogenicity. METHODS: Primary human monocyte derived macrophages (MDMs) were co-cultured with NS1 alone or with HDL, LDL, LPS and/or platelet activating factor (PAF) from individuals with a history of past dengue fever (DF = 8) or dengue haemorrhagic fever (DHF = 8). IL-1ß levels were measured in culture supernatants, and gene expression analysis carried out in MDMs. Monocyte subpopulations were assessed by flow cytometry. Hierarchical cluster analysis with Euclidean distance calculations were used to differentiate clusters. Differentially expressed variables were extracted and a classifier model was developed to differentiate between past DF and DHF. RESULTS: Significantly higher levels of IL-1ß were seen in culture supernatants when NS1 was co-cultured with LDL (p = 0.01, median = 45.69 pg/ml), but lower levels when NS1 was co-cultured with HDL (p = 0.05, median = 4.617 pg/ml). MDMs of those with past DHF produced higher levels of IL-1ß when NS1 was co-cultured with PAF (p = 0.02). MDMs of individuals with past DHF, were significantly more likely to down-regulate RPLP2 gene expression when macrophages were co-cultured with either PAF alone, or NS1 combined with PAF, or NS1 combined with LDL. When NS1 was co-cultured with PAF, HDL or LDL two clusters were detected based on IL10 expression, but these did not differentiate those with past DF or DHF. CONCLUSIONS: As RPLP2 is important in DENV replication, regulating cellular stress responses and immune responses and IL-10 is associated with severe disease, it would be important to further explore how differential expression of RPLP2 and IL-10 could lead to disease pathogenesis based on NS1 and lipid interactions.


Assuntos
Vírus da Dengue , Dengue , Macrófagos , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/metabolismo , Dengue/virologia , Dengue/imunologia , Macrófagos/metabolismo , Masculino , Adulto , Feminino , Interleucina-1beta/metabolismo , Lipídeos
6.
Euro Surveill ; 29(36)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239729

RESUMO

While locally-acquired dengue virus (DENV) human infections occur in mainland France since 2010, data to identify the mosquito species involved and to trace the virus are frequently lacking. Supported by a local network gathering public health agencies and research laboratories, we analysed, in late summer 2023, mosquitoes from privately-owned traps within a French urban neighbourhood affected by a dengue cluster. The cluster, in Auvergne-Rhône-Alpes, comprised three cases, including two autochthonous ones. Upon return from a recent visit to the French Caribbean Islands, the third case had consulted healthcare because of dengue-compatible symptoms, but dengue had not been recognised. For the two autochthonous cases, DENV-specific antibodies in serum or a positive quantitative PCR for DENV confirmed DENV infection. The third case had anti-flavivirus IgMs. No DENV genetic sequences were obtained from affected individuals but Aedes albopictus mosquitoes trapped less than 200 m from the autochthonous cases' residence contained DENV. Genetic data from the mosquito-derived DENV linked the cluster to the 2023-2024 dengue outbreak in the French Caribbean Islands. This study highlights the importance of raising mosquito-borne disease awareness among healthcare professionals. It demonstrates Ae. albopictus as a DENV vector in mainland France and the value of private mosquito traps for entomo-virological surveillance.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Aedes/virologia , Humanos , Dengue/transmissão , Dengue/epidemiologia , Dengue/diagnóstico , Dengue/virologia , França/epidemiologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/genética , Mosquitos Vetores/virologia , Surtos de Doenças , Feminino , Estações do Ano
7.
Nat Commun ; 15(1): 8221, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300135

RESUMO

The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 µM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.


Assuntos
Aedes , Vírus da Dengue , Enterobacter , Microbioma Gastrointestinal , Mosquitos Vetores , Esfingosina , Simbiose , Zika virus , Aedes/virologia , Aedes/microbiologia , Aedes/efeitos dos fármacos , Animais , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/efeitos dos fármacos , Zika virus/fisiologia , Zika virus/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Enterobacter/efeitos dos fármacos , Enterobacter/fisiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Dengue/transmissão , Dengue/virologia , Dengue/prevenção & controle , Feminino , Internalização do Vírus/efeitos dos fármacos , Humanos
8.
PLoS Negl Trop Dis ; 18(9): e0012482, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39255310

RESUMO

BACKGROUND: Climate change and urbanization will alter the global distribution of disease vectors, changing the disease burden in yet unpredictable ways. Aedes aegypti is a mosquito responsible for transmitting dengue, Zika, chikungunya, and yellow fever viruses that breeds in containers associated with urban environments. We sought to understand how ambient temperature and larval densities in the immature aquatic phases determine adult life history traits and dengue virus loads post-infection. We predicted that larval crowding and high temperatures would both lead to smaller mosquitoes that might struggle to invest in an immune response and, hence, would exhibit high viral loads. METHODS: We first examined larval densities from urban and rural areas via a meta-analysis. We then used these data to inform a laboratory-based 2x2 design examining the interacting effects of temperature (21 vs. 26°C) and density (0.2 vs. 0.4 larvae/mL) on adult life history and dengue virus loads. RESULTS: We found that urban areas had an ~8-fold increase in larval densities compared to more rural sites. In the lab, we found that crowding had more impact on mosquito traits than temperature. Crowding led to slower development, smaller mosquitoes, less survival, lower fecundity, and higher viral loads, as predicted. The higher temperature led to faster development, reduced fecundity, and lower viral loads. The virus-reducing effect of higher temperature rearing was, however, overwhelmed by the impact of larval crowding when both factors were present. CONCLUSIONS: These data reveal complex interactions between the environmental effects experienced by immature mosquitoes and adult traits. They especially highlight the importance of crowding with respect to adult viral loads. Together, these data suggest that urban environments might enhance dengue virus loads and, therefore, possibly transmission, a concerning result given the increasing rates of urbanization globally.


Assuntos
Aedes , Vírus da Dengue , Dengue , Larva , Mosquitos Vetores , Carga Viral , Aedes/virologia , Aedes/fisiologia , Animais , Vírus da Dengue/fisiologia , Larva/virologia , Dengue/transmissão , Dengue/virologia , Mosquitos Vetores/virologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Temperatura , Feminino , Aglomeração , Humanos
9.
PLoS One ; 19(9): e0310635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39298440

RESUMO

Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is considered to be a secondary vector of DENV. However, it was responsible for a recent DENV outbreak of unprecedented magnitude in Reunion Island, a French island in the South West Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially heterogeneous pattern across the island, leading to questions about the differential vector competence of mosquito populations from different geographic areas. The aim of this study was to gain a better understanding of the vector competence of the Ae. albopictus populations from Reunion Island for local DENV epidemic strains, while considering their infection by Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus sampled across Reunion Island and exposed to three DENV strains: one strain of DENV serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector competence parameters including infection rate, dissemination efficiency and transmission efficiency, at different days post-exposition (dpe). We also assessed whether there was a correlation between the density of Wolbachia and viral load/vector competence parameters. Our results show that the Ae. albopictus populations tested were not able to transmit the two DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 strain, probably due to difference in viral titres. Statistical analyses showed that the parameters mosquito population, generation, dpe and area of sampling significantly affect the transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to mosquito population, no significant correlation was found between Wolbachia density and either viral load or vector competence parameters for DENV-1. Our results highlight the importance of using natural mosquito populations for a better understanding of transmission patterns of dengue.


Assuntos
Aedes , Vírus da Dengue , Dengue , Mosquitos Vetores , Wolbachia , Animais , Aedes/virologia , Aedes/microbiologia , Vírus da Dengue/fisiologia , Wolbachia/fisiologia , Dengue/transmissão , Dengue/epidemiologia , Dengue/virologia , Reunião/epidemiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/microbiologia , Carga Viral , Humanos , Insetos Vetores/virologia , Insetos Vetores/microbiologia , Feminino
10.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274895

RESUMO

Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.


Assuntos
Antivirais , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Ensaios Clínicos como Assunto , Serina Endopeptidases/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos
11.
J Clin Virol ; 174: 105721, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39232301

RESUMO

Dengue virus (DENV) is one of the most significant mosquito-borne diseases in Nepal. In 2023, DENV outbreaks began in Eastern Nepal, near the border with India, and rapidly spread nationwide. The study aims to describe the outbreak's epidemiological pattern, laboratory characteristics, DENV serotypes, and genotypes. A hospital-based cross-sectional study was conducted in four hospitals in Jhapa, Eastern Nepal, in 2023. Acute serum samples were obtained from dengue suspected patients within 7 days of illness and subjected to virus isolation, conventional and real-time polymerase chain reaction (RT-PCR), and phylogenetic analysis. Out of 60 samples, 42 (70 %), 11 (18.3 %) and 7 (11.7 %) were primary, secondary and non-dengue infection, respectively. Among 53 dengue confirmed patients, 46 (86.7 %) were positive for NS1 and 12 (22.6 %) were positive for both NS1 and IgM. Out of 42 dengue isolates, a new clade of the cosmopolitan genotype of DENV-2 was the most prevalent (28, 66.7 %), followed by genotype III of DENV-3 (11, 26.2 %) and genotype V of DENV-1 (3, 7.1 %). Genotype III of DENV-3 was first introduced in 2022-2023 in Nepal. Phylogenetic analysis of the E gene revealed the DENV-2 isolates from Nepal had 98 % homologous nucleotide similarity with the strains from India and Bangladesh. To our knowledge, this is the first report of circulating serotypes and genotypes of DENV in Jhapa. Integrating molecular findings into the dengue control plan can enhance surveillance efforts, monitor disease trends, and implement proactive measures to reduce the burden of dengue and prevent fatalities in future outbreaks.


Assuntos
Vírus da Dengue , Dengue , Surtos de Doenças , Genótipo , Filogenia , Sorogrupo , Humanos , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Dengue/epidemiologia , Dengue/virologia , Nepal/epidemiologia , Estudos Transversais , Adulto , Masculino , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Criança , Pré-Escolar , Idoso , RNA Viral/genética
12.
Viruses ; 16(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39339867

RESUMO

The establishment of effective antiviral responses within host cells is intricately related to their metabolic status, shedding light on immunometabolism. In this study, we investigated the hypothesis that cellular reliance on glutamine metabolism contributes to the development of a potent antiviral response. We evaluated the antiviral response in the presence or absence of L-glutamine in the culture medium, revealing a bivalent response hinging on cellular metabolism. While certain interferon-stimulated genes (ISGs) exhibited higher expression in an oxidative phosphorylation (OXPHOS)-dependent manner, others were surprisingly upregulated in a glycolytic-dependent manner. This metabolic dichotomy was influenced in part by variations in interferon-ß (IFN-ß) expression. We initially demonstrated that the presence of L-glutamine induced an enhancement of OXPHOS in A549 cells. Furthermore, in cells either stimulated by poly:IC or infected with dengue virus and Zika virus, a marked increase in ISGs expression was observed in a dose-dependent manner with L-glutamine supplementation. Interestingly, our findings unveiled a metabolic dependency in the expression of specific ISGs. In particular, genes such as ISG54, ISG12 and ISG15 exhibited heightened expression in cells cultured with L-glutamine, corresponding to higher OXPHOS rates and IFN-ß signaling. Conversely, the expression of viperin and 2'-5'-oligoadenylate synthetase 1 was inversely related to L-glutamine concentration, suggesting a glycolysis-dependent regulation, confirmed by inhibition experiments. This study highlights the intricate interplay between cellular metabolism, especially glutaminergic and glycolytic, and the establishment of the canonical antiviral response characterized by the expression of antiviral effectors, potentially paving the way for novel strategies to modulate antiviral responses through metabolic interventions.


Assuntos
Glutamina , Interferon beta , Fosforilação Oxidativa , Poli I-C , Zika virus , Humanos , Glutamina/metabolismo , Células A549 , Poli I-C/farmacologia , Interferon beta/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Antivirais/farmacologia , Glicólise/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Replicação Viral/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Proteína Viperina
13.
J Med Virol ; 96(9): e29923, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39291820

RESUMO

Arthropod-borne viruses, such as dengue virus (DENV), pose significant global health threats, with DENV alone infecting around 400 million people annually and causing outbreaks beyond endemic regions. This study aimed to enhance serological diagnosis and discover new drugs by identifying immunogenic protein regions of DENV. Utilizing a comprehensive approach, the study focused on peptides capable of distinguishing DENV from other flavivirus infections through serological analyses. Over 200 patients with confirmed arbovirus infection were profiled using high-density pan flavivirus peptide arrays comprising 6253 peptides and the computational method matrix of local coupling energy (MLCE). Twenty-four peptides from nonstructural and structural viral proteins were identified as specifically recognized by individuals with DENV infection. Six peptides were confirmed to distinguish DENV from Zika virus (ZIKV), West Nile virus (WNV), Yellow Fever virus (YFV), Usutu virus (USUV), and Chikungunya virus (CHIKV) infections, as well as healthy controls. Moreover, the combination of two immunogenic peptides emerged as a potential serum biomarker for DENV infection. These peptides, mapping to highly accessible regions on protein structures, show promise for diagnostic and prophylactic strategies against flavivirus infections. The described methodology holds broader applicability in the serodiagnosis of infectious diseases.


Assuntos
Infecções por Flavivirus , Flavivirus , Análise Serial de Proteínas , Humanos , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/imunologia , Flavivirus/imunologia , Análise Serial de Proteínas/métodos , Peptídeos/imunologia , Desenvolvimento de Vacinas , Biologia Computacional/métodos , Dengue/diagnóstico , Dengue/imunologia , Dengue/sangue , Vírus da Dengue/imunologia , Vírus da Dengue/genética , Ensaios de Triagem em Larga Escala/métodos , Testes Sorológicos/métodos , Biomarcadores/sangue , Proteínas Virais/imunologia , Adulto , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , Masculino , Feminino , Zika virus/imunologia
14.
Virulence ; 15(1): 2400553, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39282971

RESUMO

The pathophysiology of dengue may be influenced by antibodies released during infection. Several autoimmune diseases are accompanied by antinuclear antibodies (ANAs) but 8-10% of the general population have positive ANA tests. To test the hypothesis that an ANA-positive test indicates an immune dysregulated state that modifies the risk for certain clinical disorders in people with or without an autoimmune disease, we examined the various ANA profiles and their relationships to various autoimmune disorders, as well as the severity of these relationships, in patients infected with dengue fever. Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) methods were used. Indirect immunofluorescence assay (IIFA) and line immunoassay (LIA) were performed to detect and differentiate the ANAs among dengue infected patients. Out of 135 dengue virus-positive patients, 94.07% were positive by ELISA and 5.93% positive by RT-PCR method. ANAs by IIFA and LIA were detected in 54.8% and 18.5% of the dengue positive patients, respectively, and 10.3% and 7.1% of the 126 dengue negative patients, respectively. This study showed that dengue was associated with an increased risk of autoimmune myositis and mixed connective tissue disease (MCTD), a rare complication of dengue. The risk of other autoimmune diseases did not seem to increase after DENV infection.


Assuntos
Anticorpos Antinucleares , Doenças Autoimunes , Dengue , Ensaio de Imunoadsorção Enzimática , Humanos , Anticorpos Antinucleares/sangue , Dengue/sangue , Dengue/imunologia , Dengue/diagnóstico , Índia/epidemiologia , Doenças Autoimunes/sangue , Doenças Autoimunes/imunologia , Doenças Autoimunes/diagnóstico , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Técnica Indireta de Fluorescência para Anticorpo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Idoso , Criança , Vírus da Dengue/imunologia
15.
Emerg Microbes Infect ; 13(1): 2404159, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39312399

RESUMO

ABSTRACTThe severity of the dengue epidemic is on the rise, with its geographic range had expanded to southern Europe by 2024. In this August, the WHO updated the pathogens that could spark the next pandemic, dengue virus was on the list. Vaccines and drugs serve as powerful tools for both preventing dengue infections and treating patients. Animal models play a pivotal role in vaccine development and drug screening. Available potential susceptible animals, including non-human primates, rodents, pigs, and tree shrews, have been extensively explored to establish animal models of dengue disease. Despite significant advancements, there are still notable limitations. Different animal models exhibit distinct constraining factors such as viraemia, host susceptibility, immune function of the host, clinical symptoms, ADE (antibody-dependent enhancement) phenomena, cytokine storm response to various serotypes and strain variations. Furthermore, despite extensive research on the dengue virus receptor in recent years, genetically modified animal models immunocompetent harbouring dengue virus susceptibility receptors have not yet been available. This work reviewed the research progress of dengue virus receptors and dengue animal models, suggesting that the development of genetically modified murine models expressing dengue virus functional receptors may hold a promise for future dengue disease research, especially for its vaccine development.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Modelos Animais de Doenças , Animais , Dengue/imunologia , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/genética , Humanos , Vacinas contra Dengue/imunologia , Camundongos , Desenvolvimento de Vacinas , Suínos , Viremia
16.
Int J Nanomedicine ; 19: 9757-9770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318604

RESUMO

Background: The global prevalence of Dengue virus (DENV) infection poses a significant health risk, urging the need for effective vaccinations. Peptide vaccines, known for their capacity to induce comprehensive immunity against multiple virus serotypes, offer promise due to their stability, safety, and design flexibility. Spherical nucleic acid (SNA), particularly those with gold nanoparticle cores, present an attractive avenue for enhancing peptide vaccine efficacy due to their modularity and immunomodulatory properties. Methods: The spherical nucleic acid-TBB (SNA-TBB), a novel nanovaccine construct, was fabricated through the co-functionalization process of SNA with epitope peptide, targeting all four serotypes of the DENV. This innovative approach aims to enhance immunogenicity and provide broad-spectrum protection against DENV infections. The physicochemical properties of SNA-TBB were characterized using dynamic light scattering, zeta potential measurement, and transmission electron microscopy. In vitro assessments included endocytosis studies, cytotoxicity evaluation, bone marrow-dendritic cells (BMDCs) maturation and activation analysis, cytokine detection, RNA sequencing, and transcript level analysis in BMDCs. In vivo immunization studies in mice involved evaluating IgG antibody titers, serum protection against DENV infection and safety assessment of nanovaccines. Results: SNA-TBB demonstrated successful synthesis, enhanced endocytosis, and favorable physicochemical properties. In vitro assessments revealed no cytotoxicity and promoted BMDCs maturation. Cytokine analyses exhibited heightened IL-12p70, TNF-α, and IL-1ß levels. Transcriptomic analysis highlighted genes linked to BMDCs maturation and immune responses. In vivo studies immunization with SNA-TBB resulted in elevated antigen-specific IgG antibody levels and conferred protection against DENV infection in neonatal mice. Evaluation of in vivo safety showed no signs of adverse effects in vital organs. Conclusion: The study demonstrates the successful development of SNA-TBB as a promising nanovaccine platform against DENV infection and highlights the potential of SNA-based peptide vaccines as a strategy for developing safe and effective antiviral immunotherapy.


Assuntos
Células Dendríticas , Vacinas contra Dengue , Vírus da Dengue , Dengue , Animais , Vírus da Dengue/imunologia , Camundongos , Dengue/prevenção & controle , Dengue/imunologia , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/química , Vacinas contra Dengue/administração & dosagem , Células Dendríticas/imunologia , Apresentação de Antígeno , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Humanos , Nanopartículas Metálicas/química , Ouro/química , Feminino , Citocinas/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue
17.
Medicina (Kaunas) ; 60(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336598

RESUMO

Background and Objectives: The steady spread of dengue virus (DENV) poses a profound public health threat worldwide. Reverse transcription real-time polymerase chain reaction (RT2-PCR) has been increasingly recognized as a reference method for the diagnosis of acute dengue infection. The goal of this study was to assess the diagnostic accuracy of five different RT2-PCR kits for the detection of DENV in a historically processed set of sera samples. Materials and Methods: In this retrospective study, 25 sera samples from routinely processed unique adult patients with a known DENV status (previously tested in both molecular and serological assays) were tested in parallel using four conventional (RealStar Dengue PCR Kit 3.0, Clonit'ngo Zika, Dengue & Chikungunya, BioPerfectus Zika Virus/Dengue Virus/Chikungunya Virus Real Time PCR Kit and Novaplex Tropical fever virus) and one sample-to-result (STANDARD M10 Arbovirus Panel) RT2-PCR assays. Additionally, an end-point dilution analysis was conducted in quintuplicate on six serial dilutions of an RNA preparation obtained from a culture-grown DENV serotype 1 strain for a total of 150 tests. Results: The overall accuracy of the evaluated tests ranged from 84% to 100%. In particular, the sensitivity of three conventional RT2-PCR assays (RealStar, Clonit'ngo and Novaplex) was 100% (95% CI: 79.6-100%), while it was lower (73.3%; 95% CI: 48.1-89.1%) for the BioPerfectus kit. The sample-to-result STANDARD M10 panel performed comparatively well, showing a sensitivity of 92.9% (95% CI: 68.5-98.7%). No false positive results were registered in any assay. The end-point dilution analysis suggested that the RealStar kit had the lowest limit of detection. Conclusions: Available RT2-PCR kits for the detection of DENV are highly specific and generally sensitive and, therefore, their implementation in diagnostic pathways is advisable.


Assuntos
Vírus da Dengue , Dengue , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Humanos , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/genética , Estudos Retrospectivos , Dengue/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Adulto
18.
Cell Commun Signal ; 22(1): 451, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327552

RESUMO

BACKGROUND: Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY: Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION: Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.


Assuntos
Biomarcadores , Dengue , Imunomodulação , Humanos , Dengue/imunologia , Dengue/diagnóstico , Dengue/virologia , Animais , Vírus da Dengue/imunologia , Índice de Gravidade de Doença , Citocinas/metabolismo , Citocinas/imunologia , Imunidade Inata
19.
Infect Dis Poverty ; 13(1): 69, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327615

RESUMO

Dengue, an acute febrile disease transmitted by Aedes mosquitoes, is caused by the dengue virus (DENV), presenting a formidable challenge to global public health. By examining clues from ancient Chinese books and conducting a comprehensive review, this study elucidates the characteristics of potential dengue epidemics in China prior to 1978. This evidence indicates that China may not have experience dengue epidemics before 1840. During 1840-1949, however, it experienced a noticeable dengue occurrence and prevalence in the 1870s, 1920s, and 1940s. Then from 1949 to 1978, only sporadic reports were accounted. The disparity in the frequency of dengue occurrences across three time periods suggests that the persistent characteristic of dengue epidemics in China primarily arises from imported cases resulting from international exchanges, subsequently leading to local outbreaks influenced by global epidemic trend. This research offers a novel perspective on retrospectively examining the historical trajectory of dengue epidemics and provides valuable insights into exploration of DENV epidemic patterns.


Assuntos
Dengue , Epidemias , Dengue/epidemiologia , Dengue/história , China/epidemiologia , Humanos , História do Século XX , Epidemias/história , História do Século XIX , Vírus da Dengue , Animais , Aedes/virologia
20.
Viruses ; 16(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39339843

RESUMO

Dengue illness, caused by the dengue viruses, continues to be a major global health concern, with increasing incidence and the emergence of severe manifestations such as neurological complications. An overview of the current understanding of dengue epidemiology, clinical manifestations, and research priorities is presented here. Dengue transmission has escalated in recent years, exacerbated by factors such as vector expansion, climate change, and socioeconomic challenges. The clinical spectrum of dengue ranges from mild febrile illness to severe manifestations, including hemorrhagic fever and neurological complications. Neurological manifestations of dengue, once considered rare, are now increasingly reported, encompassing encephalitis, myelitis, and Guillain-Barré Syndrome, among others. Diagnosis primarily relies on laboratory methods such as RT/PCR, NS1 antigen detection, and serological assays. Despite advancements in understanding the dengue pathogenesis, there remains a critical need for effective vaccines, antiviral drugs, improved surveillance methods, predictive models for disease severity, and long-term studies on post-Dengue sequelae. Integrated programs and holistic approaches to dengue control are essential for mitigating its impact. Addressing these research priorities will be pivotal in combating dengue and reducing its global burden.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/epidemiologia , Dengue/complicações , Vírus da Dengue/patogenicidade , Vírus da Dengue/imunologia , Síndrome de Guillain-Barré/etiologia , Síndrome de Guillain-Barré/epidemiologia , Síndrome de Guillain-Barré/virologia , Animais , Sistema Nervoso Periférico/virologia , Sistema Nervoso Periférico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA