Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 130: 408-417, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30064097

RESUMO

The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO2, TiO2, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO2 and TiO2 nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Titânio/efeitos adversos
2.
Plant Mol Biol ; 98(1-2): 137-152, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30143991

RESUMO

KEY MESSAGE: In this study we show that expression of the Arabidopsis ABF4 gene in potato increases tuber yield under normal and abiotic stress conditions, improves storage capability and processing quality of the tubers, and enhances salt and drought tolerance. Potato is the third most important food crop in the world. Potato plants are susceptible to salinity and drought, which negatively affect crop yield, tuber quality and market value. The development of new varieties with higher yields and increased tolerance to adverse environmental conditions is a main objective in potato breeding. In addition, tubers suffer from undesirable sprouting during storage that leads to major quality losses; therefore, the control of tuber sprouting is of considerable economic importance. ABF (ABRE-binding factor) proteins are bZIP transcription factors that regulate abscisic acid signaling during abiotic stress. ABF proteins also play an important role in the tuberization induction. We developed transgenic potato plants constitutively expressing the Arabidopsis ABF4 gene (35S::ABF4). In this study, we evaluated the performance of 35S::ABF4 plants grown in soil, determining different parameters related to tuber yield, tuber quality (carbohydrates content and sprouting behavior) and tolerance to salt and drought stress. Besides enhancing salt stress and drought tolerance, constitutive expression of ABF4 increases tuber yield under normal and stress conditions, enhances storage capability and improves the processing quality of the tubers.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Secas , Regulação da Expressão Gênica de Plantas , Tubérculos/genética , Tubérculos/fisiologia , Tolerância ao Sal/genética , Solanum tuberosum/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredução , Fotossíntese/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/genética , Tubérculos/efeitos dos fármacos , Plantas Geneticamente Modificadas , Prolina/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Água
3.
Plant Physiol Biochem ; 129: 109-121, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29870862

RESUMO

The success of Sclerotinia sclerotiorum infection relies mainly on the production of the non-host selective toxin named oxalic acid (OA). This toxin is known to play multiple roles in a host infected by the fungus, but its effect on photosynthesis and the antioxidant system of common bean plants remain elusive. Therefore, we performed detailed analysis of leaf gas exchange, chlorophyll a fluorescence, activities of antioxidant enzymes, concentrations of reactive oxygen species and photosynthetic pigments to investigate the OA's role during the S. sclerotiorum pathogenesis. To achieve this goal, common bean plants were sprayed with water or with oxalic acid (referred to as -OA and +OA plants, respectively) and either non-challenged or challenged with a wild-type (WT) or an OA-defective mutant (A4) of S. sclerotiorum. Irrespective of OA spray, the WT isolate was more aggressive than the A4 isolate and spraying OA increased OA concentration in the leaflets as well as the aggressiveness of both isolates. Biochemical limitations were behind S. sclerotiorum-induced photosynthetic impairments notably for the +OA plants inoculated with the WT isolate. Inoculated plants were not able to fully capture and exploit the collected energy due to the degradation of photosynthetic pigments. Photoinhibition of photosynthesis and photochemical dysfunctions were potentiated by OA. Higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase besides reductions on catalase activity were noticed for plants inoculated with the WT isolate. OA was able to counteract most of the increases in the activities of antioxidant enzymes thereby increasing the generation of superoxide and hydrogen peroxide and the concurrent damage to the membranes of host cells as evidenced by the high malondialdehyde concentration. In conclusion, OA was found to enhance biochemical limitations to photosynthesis, photochemical dysfunctions and oxidative stress in the leaflets of common bean plants infected by S. sclerotiorum.


Assuntos
Ascomicetos/efeitos dos fármacos , Ácido Oxálico/farmacologia , Phaseolus/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ascorbato Peroxidases/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila A/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Phaseolus/microbiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
4.
Plant Physiol Biochem ; 129: 310-322, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29925047

RESUMO

Crambe abyssinica is widely cultivated in the off-season in the Midwest region of Brazil with great potential for biodeisel production. Low precipitation is characteristic of this region, which can drastically affect the productivity of C. abyssinica. Signaling molecules, such as nitric oxide (NO), can potentially alleviate the effects of water stress on plants. Here we test whether nitric oxide, applied by donor sodium nitroprusside (SNP), can alleviate the occurrence of water deficit damages in Crambe plants and maintain physiological and biochemical processes. Crambe plants were sprayed with three doses of SNP (0, 75, and 150 µM) and were submitted to two water levels (100% and 50% of the maximum water holding capacity). After 32 and 136 h, leaves were analyzed to evaluate the concentration of NO, water relations, gas exchange, chlorophyll a fluorescence, chloroplastidic pigments, proline, malondialdehyde, hydrogen peroxide, superoxide anions, and the antioxidant enzymes activity. Application of SNP allowed the maintenance of gas exchange, chlorophyll fluorescence parameters, and activities of antioxidant enzymes in plants exposed to water deficit, as well as increased the concentration of NO, proline, chloroplastidic pigments and osmotic potential. The application of SNP also decreased the concentration of malondialdehyde and reactive oxygen species in plants submitted to water deficit. Thus, the application of SNP prevented the occurrence of symptoms of water deficit in Crambe plants, maintaining the physiological and biochemical responses at reference levels, even under stress conditions.


Assuntos
Crambe (Planta)/metabolismo , Óxido Nítrico/metabolismo , Clorofila A/metabolismo , Crambe (Planta)/efeitos dos fármacos , Desidratação , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Nitroprussiato/farmacologia , Pressão Osmótica/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo
5.
New Phytol ; 219(3): 914-931, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29786858

RESUMO

The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.


Assuntos
Secas , Florestas , Biomassa , Dióxido de Carbono/farmacologia , Simulação por Computador , Geografia , Modelos Teóricos , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Chuva , América do Sul
6.
Pest Manag Sci ; 74(5): 1197-1205, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28485107

RESUMO

INTRODUCTION: Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO2 assimilation. RESULTS: Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha-1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. CONCLUSION: Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry.


Assuntos
Eucalyptus/fisiologia , Glicina/análogos & derivados , Herbicidas , Hormese , Saccharum/fisiologia , Dióxido de Carbono/metabolismo , Relação Dose-Resposta a Droga , Eucalyptus/crescimento & desenvolvimento , Glicina/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Saccharum/crescimento & desenvolvimento , Glifosato
7.
Physiol Plant ; 160(4): 383-395, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28417466

RESUMO

Water deficit is a major environmental constraint on crop productivity and performance and nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. This study aims to test the hypothesis that leaf spraying of S-nitrosoglutathione (GSNO), an NO donor, improves the antioxidant defense in both roots and leaves of sugarcane plants under water deficit, with positive consequences for photosynthesis. In addition, the roles of key photosynthetic enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) in maintaining CO2 assimilation of GSNO-sprayed plants under water deficit were evaluated. Sugarcane plants were sprayed with water or GSNO 100 µM and subjected to water deficit, by adding polyethylene glycol (PEG-8000) to the nutrient solution. Sugarcane plants supplied with GSNO presented increases in the activity of antioxidant enzymes such as superoxide dismutase in leaves and catalase in roots, indicating higher antioxidant capacity under water deficit. Such adjustments induced by GSNO were sufficient to prevent oxidative damage in both organs and were associated with better leaf water status. As a consequence, GSNO spraying alleviated the negative impact of water deficit on stomatal conductance and photosynthetic rates, with plants also showing increases in Rubisco activity under water deficit.


Assuntos
Doadores de Óxido Nítrico/farmacologia , Fosfoenolpiruvato Carboxilase/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/efeitos dos fármacos , S-Nitrosoglutationa/farmacologia , Saccharum/efeitos dos fármacos , Antioxidantes/metabolismo , Catalase/metabolismo , Desidratação , Oxirredução , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/enzimologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Saccharum/enzimologia , Saccharum/fisiologia , Superóxido Dismutase/metabolismo , Água/fisiologia
8.
J Plant Physiol ; 177: 93-99, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25703773

RESUMO

The aim of this study was to evaluate the differential sensitivity of sugarcane genotypes to H2O2 in root medium. As a hypothesis, the drought tolerant genotype would be able to minimize the oxidative damage and maintain the water transport from roots to shoots, reducing the negative effects on photosynthesis. The sugarcane genotypes IACSP94-2094 (drought tolerant) and IACSP94-2101 (drought sensitive) were grown in a growth chamber and exposed to three levels of H2O2 in nutrient solution: control; 3 mmol L(-1) and 80 mmol L(-1). Leaf gas exchange, photochemical activity, root hydraulic conductance (Lr) and antioxidant metabolism in both roots and leaves were evaluated after 15 min of treatment with H2O2. Although, root hydraulic conductance, stomatal aperture, apparent electron transport rate and instantaneous carboxylation efficiency have been reduced by H2O2 in both genotypes, IACSP94-2094 presented higher values of those variables as compared to IACSP94-2101. There was a significant genotypic variation in relation to the physiological responses of sugarcane to increasing H2O2 in root tissues, being root changes associated with modifications in plant shoots. IACSP94-2094 presented a root antioxidant system more effective against H2O2 in root medium, regardless H2O2 concentration. Under low H2O2 concentration, water transport and leaf gas exchange of IACSP94-2094 were less affected as compared to IACSP94-2101. Under high H2O2 concentration, the lower sensitivity of IACSP94-2094 was associated with increases in superoxide dismutase activity in roots and leaves and increases in catalase activity in roots. In conclusion, we propose a general model of sugarcane reaction to H2O2, linking root and shoot physiological responses.


Assuntos
Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Saccharum/efeitos dos fármacos , Secas , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Saccharum/genética , Saccharum/metabolismo
9.
Physiol Plant ; 151(4): 359-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24118032

RESUMO

Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism.


Assuntos
Ácido Abscísico/metabolismo , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia , Transpiração Vegetal , Rizosfera , Terpenos/metabolismo , Vitis/microbiologia , Ácido Abscísico/farmacologia , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Filogenia , Transpiração Vegetal/efeitos dos fármacos , RNA Ribossômico 16S/genética , Terpenos/química , Técnicas de Cultura de Tecidos , Vitis/imunologia , Vitis/fisiologia
10.
Tree Physiol ; 33(12): 1308-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24284866

RESUMO

Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems.


Assuntos
Magnoliopsida/fisiologia , Transpiração Vegetal/fisiologia , Argentina , Biomassa , Carbono/farmacologia , Fertilizantes , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/crescimento & desenvolvimento , Nitrogênio/farmacologia , Fenótipo , Fósforo/farmacologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Árvores , Água/fisiologia
11.
Tree Physiol ; 33(3): 241-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23355634

RESUMO

Plants of Pinus taeda L. from each of four families were fertilized with nitrogen (N), phosphorus (P) or N + P at planting. The H family had the highest growth in dry mass while the L family had the lowest growth. Measurements of plant hydraulic architecture traits were performed during the first year after planting. Stomatal conductance (gs), water potential at predawn (Ψpredawn) and at midday (Ψmidday), branch hydraulic conductivity (ks and kl) and shoot hydraulic conductance (K) were measured. One year after planting, dry weight partitioning of all aboveground organs was performed. Phosphorus fertilization increased growth in all four families, while N fertilization had a negative effect on growth. L family plants were more negatively affected than H family plants. This negative effect was not due to limitations in N or P uptake because plants from all the families and treatments had the same N and P concentration in the needles. Phosphorus fertilization changed some hydraulic parameters, but those changes did not affect growth. However, the negative effect of N can be explained by changes in hydraulic traits. L family plants had a high leaf dry weight per branch, which was increased by N fertilization. This change occurred together with a decrease in shoot conductance. Therefore, the reduction in gs was not enough to avoid the drop in Ψmidday. Consequently, stomatal closure and the deficient water status of the needles resulted in a reduction in growth. In H family plants, the increase in the number of needles per branch due to N fertilization was counteracted by a reduction in gs and also by a reduction in tracheid lumen size and length. Because of these two changes, Ψmidday did not drop and water availability in the needles was adequate for sustained growth. In conclusion, fertilization affects the hydraulic architecture of plants, and different families develop different strategies. Some of the hydraulic changes can explain the negative effect of N fertilization on growth.


Assuntos
Nitrogênio/farmacologia , Fósforo/farmacologia , Pinus taeda/fisiologia , Argentina , Biomassa , Fertilizantes/efeitos adversos , Variação Genética , Umidade , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Pinus taeda/efeitos dos fármacos , Pinus taeda/genética , Pinus taeda/crescimento & desenvolvimento , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Temperatura , Árvores , Água/fisiologia
12.
Plant Biol (Stuttg) ; 15 Suppl 1: 118-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22747518

RESUMO

The success of Prosopis strombulifera in growing under high NaCl concentrations involves a carefully controlled balance among different processes, including compartmentation of Cl(-) and Na(+) in leaf vacuoles, exclusion of Na(+) in roots, osmotic adjustment and low transpiration. In contrast, Na(2) SO(4) causes growth inhibition and toxicity. We propose that protection of the cytoplasm can be achieved through production of high endogenous levels of specific compatible solutes. To test our hypothesis, we examined endogenous levels of compatible solutes in roots and leaves of 29-, 40- and 48-day-old P. strombulifera plants grown in media containing various concentrations of NaCl, Na(2) SO(4) or in mixtures of both, with osmotic potentials of -1.0,-1.9 and -2.6 MPa, as correlated with changes in hydric parameters. At 24 h after the last pulse plants grown in high NaCl concentrations had higher relative water content and relatively higher osmotic potential than plants grown in Na(2) SO(4) (at 49 days). These plants also had increased synthesis of proline, pinitol and mannitol in the cytoplasm, accompanied by normal carbon metabolism. When the sulphate anion is present in the medium, the capacities for ion compartmentalisation and osmotic adjustment are reduced, resulting in water imbalance and symptoms of toxicity due to altered carbon metabolism, e.g. synthesis of sorbitol instead of mannitol, reduced sucrose production and protein content. This inhibition was partially mitigated when both anions were present together in the solution, demonstrating a detrimental effect of the sulphate ion on plant growth.


Assuntos
Carbono/metabolismo , Osmose/efeitos dos fármacos , Prosopis/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Sódio/metabolismo , Sulfatos/toxicidade , Inositol/análogos & derivados , Inositol/metabolismo , Íons/metabolismo , Manitol/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Prolina/metabolismo , Prosopis/metabolismo , Prosopis/fisiologia , Tolerância ao Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Sais/metabolismo , Sais/farmacologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Sulfatos/metabolismo , Vacúolos/metabolismo , Água/metabolismo
13.
Physiol Plant ; 146(3): 350-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22443491

RESUMO

In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop.


Assuntos
Cacau/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Potássio/farmacologia , Sódio/farmacologia , Água/metabolismo , Cacau/metabolismo , Cacau/fisiologia , Cálcio/metabolismo , Magnésio/metabolismo , Minerais/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Análise de Regressão , Solo/química , Enxofre/metabolismo , Zinco/metabolismo
14.
J Plant Physiol ; 168(17): 2056-62, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21752489

RESUMO

Iron (Fe) is an essential nutrient for plant growth and development. In plant tissues, approximately 80% of Fe is found in photosynthetic cells. This study was carried out to determine the effect of different iron concentrations on the photosynthetic characteristics of sweet potato plants. The fluorescence transient of chlorophyll a (OJIP), chlorophyll index and gas exchange were measured in plants grown for seven days in Hoagland solution containing an iron concentration of 0.45, 0.90, 4.50 or 9.00 mM Fe (as Fe-EDTA). The initial and maximum fluorescence increased in the plants receiving 9.00 mM Fe. In the analysis of the fluorescence kinetic difference, L- and K-bands appeared in all of the treatments, but the amplitude was higher in plants receiving 4.50 or 9.00 mM Fe. In plants grown in 9.00 mM Fe, the parameters of the JIP-Test indicated a better efficiency in the capture, absorption and use of light energy, and although the chlorophyll index was higher, the net photosynthesis was lower. The overall data showed that sweet potato plants subjected to high iron concentrations may not exhibit the toxicity symptoms, but the light reactions of photosynthesis can be affect, which may result in a declining net assimilation rate.


Assuntos
Clorofila/metabolismo , Ipomoea batatas/efeitos dos fármacos , Ferro/farmacologia , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Fluorescência , Hidroponia , Ipomoea batatas/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos
15.
New Phytol ; 173(3): 584-591, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17244053

RESUMO

The purpose of this study was to investigate the xylem anatomy and hydraulic characteristics of the mangrove Laguncularia racemosa grown under contrasting salinities. The study addressed the hypothesis that, at high salinity, water transport capacity may decrease in association with higher water use efficiency. Plants were grown in media to which 0, 15 and 30 NaCl was added. Vessel density and diameter were determined in transverse sections of stem and midrib leaves in terminal shoots, and hydraulic parameters were measured. In stems, the vessel density increased with salinity, while the anatomical diameter (d(a)) and hydraulic diameter (d(h)) declined; in leaves, these parameters remained unchanged with salinity. Huber value and hydraulic and specific conductivities decreased with salinity. Leaf blade resistance increased with salinity and represented the largest fraction of twig resistance. Xylem anatomy and leaf tissue of L. racemosa appeared to be modulated by salinity, which led to a coordinated decline in hydraulic properties as salinity increased. Therefore, these structural changes would reflect functional water use characteristics of leaves under salinity.


Assuntos
Combretaceae/anatomia & histologia , Combretaceae/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Água/metabolismo , Transporte Biológico/efeitos dos fármacos , Combretaceae/citologia , Combretaceae/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Caules de Planta/citologia , Caules de Planta/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Xilema/citologia , Xilema/efeitos dos fármacos
16.
Ecotoxicol Environ Saf ; 63(2): 306-12, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16677915

RESUMO

The effects induced by long-term (30 day) and short-term (6h) exposures to ozone on the physiological parameters in young plants of Caesalpinia echinata Lam., a Brazilian tree species, were determined. Potted plants were maintained in open-top chambers in Valencia, Spain, under charcoal filtered air (mean O3 level: 29 microg m3), nonfiltered air (NF; 43 microg m3), and nonfiltered air plus O3 (NF + O3; 68 microg m3), simulating prevailing concentrations observed in the city of São Paulo, Brazil, during spring months (50 microg m3 in 2002). In the plants kept in NF + O3 for 30 days, although no foliar visible injuries were observed, the net carbon assimilation rate was reduced to 50%, stomatal conductance 42%, and transpiration 40%, when compared to the results for the NF plants. No changes in antioxidants, in leaf, stem, and root biomass, and in the root/shoot ratio were observed. Significant reductions were observed in gas exchange and in PSII photochemical efficiency (Fv/Fm) after 6 h of exposure to an O3 peak. The species was shown to be sensitive to ambient O3 concentrations measured in São Paulo.


Assuntos
Caesalpinia/efeitos dos fármacos , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Ácido Ascórbico/metabolismo , Brasil , Caesalpinia/fisiologia , Fumigação , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Transpiração Vegetal/efeitos dos fármacos , Superóxido Dismutase/metabolismo
17.
J Exp Bot ; 53(378): 2239-47, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12379791

RESUMO

Studies of the desiccation tolerance of 15-month-old Licania platypus (Hemsl.) Fritsch seedlings were performed on potted plants. Pots were watered to field capacity and then dehydrated for 23-46 d to reach various visible wilting stages from slightly-wilted to dead. Root hydraulic conductance, k(r), was measured with a high-pressure flow meter and whole-stem hydraulic conductance, k(ws), was measured by a vacuum chamber method. Leaf punches were harvested for measurement of leaf water potential by a thermocouple psychrometer and for measurement of fresh- and dry-weight. L. platypus was surprisingly desiccation-tolerant, suggesting that most species of central Panama may be well adapted to the seasonality of rainfall in the region. The slightly-wilted stage corresponded to leaf water potentials and relative water contents of -2.7 MPa and 0.85, respectively, but plants did not die until these values fell to -7.5 MPa and 0.14, respectively. As desiccation proceeded k(r) and k(ws) declined relative to irrigated controls, but k(ws) was more sensitive to desiccation than k(r). Values of k(ws) declined by 70-85% in slightly-wilted to dead plants, respectively. By comparison, k(r) showed no significant change in slightly-wilted plants and fell by about 50% in plants having severely-wilted to dead shoots.


Assuntos
Adaptação Fisiológica/fisiologia , Apoptose/fisiologia , Rosales/fisiologia , Água/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Dessecação , Desastres , Panamá , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Rosales/efeitos dos fármacos , Temperatura , Clima Tropical , Água/fisiologia
18.
J Exp Bot ; 53(375): 1781-91, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12147728

RESUMO

Photosynthetic responses of sunflower plants grown for 52 d in ambient and elevated CO(2) (A=350 or E=700 micromol mol(-1), respectively) and subjected to no (control), mild or severe water deficits after 45 d were analysed to determine if E modifies responses to water deficiency. Relative water content, leaf water potential (Psi(w)) and osmotic potential decreased with water deficiency, but there were no effects of E. Growth in E decreased stomatal conductance (g(s)) and thereby transpiration, but increased net CO(2) assimilation rate (P(n), short-term measurements); therefore, water-use efficiency increased by 230% (control plants) and 380% (severe stress). Growth in E did not affect the response of P(n) to intercellular CO(2) concentration, despite a reduction of 25% in Rubisco content, because this was compensated by a 32% increase in Rubisco activity. Analysis of chlorophyll a fluorescence showed that changes in energy metabolism associated with E were small, despite the decreased Rubisco content. Water deficits decreased g(s) and P(n): metabolic limitation was greater than stomatal at mild and severe deficit and was not overcome by elevated CO(2). The decrease in P(n) with water deficiency was related to lower Rubisco activity rather than to ATP and RuBP contents. Thus, there were no important interactions between CO(2) during growth and water deficit with respect to photosynthetic metabolism. Elevated CO(2 )will benefit sunflower growing under water deficit by marginally increasing P(n), and by slowing transpiration, which will decrease the rate and severity of water deficits, with limited effects on metabolism.


Assuntos
Dióxido de Carbono/farmacologia , Helianthus/metabolismo , Fotossíntese/fisiologia , Água/fisiologia , Trifosfato de Adenosina/metabolismo , Transporte Biológico/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Complexos de Proteínas Captadores de Luz , Pressão Osmótica/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos dos fármacos , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos/metabolismo , Fatores de Tempo , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA