Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 131(1): 221-235, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33305511

RESUMO

AIMS: Toxaphene is a persistent organic pollutant, composed of approximately 1000 highly chlorinated bicyclic terpenes. The purpose of this study was to evaluate if camphor, a structural analogue of toxaphene, could stimulate aerobic biotransformation of weathered toxaphene. METHODS AND RESULTS: Two enrichment cultures that degrade camphor as the sole carbon source were established from contaminated soil and biosolids. These cultures were used to evaluate aerobic transformation of weathered toxaphene. Only the biosolids culture could transform compounds of technical toxaphene (CTTs) in the presence of camphor, while no transformation was observed in the presence of glucose or with toxaphene as a sole carbon source. The transformed toxaphene had lower concentration of CTTs with longer retention times, and higher concentration of compounds with lower retention times. Gas chromatography with electron capture negative ion mass spectrometry (GC/ECNI-MS) showed that aerobic biotransformation mainly occurred with Cl8 - and Cl9 -CTTs compounds. The patterns of Cl6 - and Cl7 -CTTs were also simplified albeit to a much lesser extent. Seven camphor-degrading bacteria were isolated from the enrichment culture but none of them could degrade toxaphene. CONCLUSION: Camphor degrading culture can aerobically transform CCTs via reductive pathway probably by co-metabolism using camphor as a co-substrate. SIGNIFICANCE AND IMPACT OF THE STUDY: Since camphor is naturally produced by different plants, this study suggests that stimulation of aerobic transformation of toxaphene may occur in nature. Moreover plants, which produce camphor or similar compounds, might be used in bioremediation of contaminated soils.


Assuntos
Bactérias/metabolismo , Cânfora/metabolismo , Inseticidas/metabolismo , Toxafeno/metabolismo , Aerobiose , Bactérias/classificação , Biodegradação Ambiental , Biotransformação , Cloro/metabolismo , Ionização de Chama , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
2.
Ecotoxicology ; 29(4): 493-502, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32291614

RESUMO

The environmental exposure to As, Se, Hg, Pb, Cr and toxaphene was assessed for 11 freshwater fish species in irrigation channels, agricultural return flow drains, a drain collecting lagoon and sections of the Colorado River at the Mexicali valley in Baja California, México, during August 2015-April 2016. Arsenic (2.90 ng ml-1) and Se (1.41 ng ml-1) in water had the highest concentrations in the return flow drains (Hardy River and Xochimilco Lagoon, respectively). However, fish axial muscle tissue had the highest concentration of Se (8.3 µg g-1) and Hg (0.36 µg g-1) in Colorado River fresh water, while As (1.7 µg g-1) in Hardy River fish was highest. Selenium concentrations in all fishes and toxaphene in Cyprinus carpio and Ameiurus natalis are above the safe levels for human consumption (0.3 µg g-1 and 180 ng g-1 respectively). Toxaphene was detected in the fish axial tissue, having the highest concentrations in Poecilia latipinna (690 ng g-1) in the Colorado River. The low proportion of the 8-Cl toxaphene congeners in fish suggests degradation of this pollutant. Tilapia. sp. cf. zillii had the most genotoxic damage with 7.4 micronucleated erythrocytes per 10,000 erythrocytes in Xochimilco Lagoon and 2 in Hardy River. The genotoxicity in all the fish species studied was significantly correlated to the concentrations of As and Se in water.


Assuntos
Peixes/fisiologia , Metais/toxicidade , Toxafeno/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Metais/metabolismo , México , Rios , Toxafeno/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Chemosphere ; 63(4): 609-15, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16213563

RESUMO

Degradation of toxaphene in soil from both newly contaminated (from Sweden) and aged spills (from Nicaragua) were studied. The newly contaminated soil contained approximately 11 mg kg(-1) toxaphene while the aged Nicaraguan soil contained approximately 100 mg kg(-1). Degradation was studied in anaerobic bioreactors, some of which were supplied with lactic acid and others with Triton X-114. In this study we found that the lower isomers Parlar 11, 12 were degraded while the concentration of isomer Parlar 15 increased. This supported an earlier evaluation which indicated that less chlorinated isomers are formed from more heavily isomers. Lactic acid when added to the soil, interfere with the degradation of toxaphene. Lactic acid was added; several isomers appeared to degrade rather slowly in newly contaminated Swedish soil. The Swedish soil, without any external carbon source, showed the slowest degradation rate of all the compounds studied. When Triton X-114 at 0.4 mM was added, the degradation rate of the compounds increased. This study illustrates that biodegradation of toxaphene is a complex process and several parameters have to be taken into consideration. Degradation of persistent pollutants in the environment using biotechnology is dependent on bioavailability, carbon sources and formation of metabolites.


Assuntos
Poluentes do Solo/metabolismo , Toxafeno/metabolismo , Anaerobiose , Biodegradação Ambiental , Isomerismo , Ácido Láctico/metabolismo , Nicarágua , Octoxinol , Polietilenoglicóis/metabolismo , Suécia , Fatores de Tempo , Toxafeno/química
4.
Syst Appl Microbiol ; 28(7): 632-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16156121

RESUMO

Enterobacter sp. strain D1 is a facultative anaerobic, Gram-negative heterotrophic bacterium isolated from toxaphene-contaminated soil. This organism was identified and characterized through phylogenetic and taxonomic studies. Based on 16S rDNA analysis, the strain D1 was clustered closely with the species Enterobacter cloacae subsp. dissolvens (LMG 2683) and E. cloacae (ATCC 13047T). Strain D1 resembled these E. cloacae strains with respect to various biochemical and nutritional characteristics, but also exhibited differences. Moreover, strain D1 is able to grow and survive with toxaphene supplied in the medium in the range 3-96 mg/L. Amongst the chemical components of toxaphene, octachlorocamphenes, nonachlorobornanes and decachlorobornanes were seen to be rapidly metabolized, although levels of hexachlorocamphenes and heptachlorobornanes were found to be slowly degraded, and subsequently accumulated during the last stage of the cultivation.


Assuntos
Enterobacter cloacae/classificação , Microbiologia do Solo , Toxafeno/metabolismo , Biodegradação Ambiental , DNA Ribossômico/análise , Enterobacter cloacae/metabolismo , Nicarágua , Filogenia , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA