Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.808
Filtrar
1.
Yakugaku Zasshi ; 144(10): 919-930, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39358247

RESUMO

The aim of our study was to develop a solventless drug pelletization and polymer coating technique for pharmaceutical manufacturing. This review describes a dry coating technique using a mechanical powder processor and a V-shaped blender to produce coated pellets or tablets by mechanically mixing polymer particles and core materials (such as drug pellets and uncoated tablets) without the need for a solvent. First, aqueous latexes comprising colloidal polymethacrylates and ethylcellulose were solidified by freeze drying to produce polymer particles for the dry coating process. These particles and the cores were then subjected to mechanical powder processing or V-shaped blending to provide coated formulations with controlled-release characteristics. Polymer coating was achieved by using agglomerates comprising assembled colloidal polymer. The agglomerated polymer was easily pulverized during the mixing treatments due to its loose structure (the lack of close contacts between the colloidal particles), and the resulting fine polymer with high adhesiveness was deposited on the cores. Colloidal polymer dispersed in aqueous latex tends to coagulate in the freeze-drying process due to condensation of the dispersion, yielding dense agglomerates with poor coating characteristics. The presence of surfactants (such as sodium lauryl sulfate) in the latex can prevent adhesion between colloidal particles in the freeze-drying process, providing loosely structured agglomerates suitable for dry coating. Dry coating with a V-shaped blender could thus be achieved with these polymer particles instead of having to use a mechanical powder processor.


Assuntos
Celulose , Liofilização , Polímeros , Celulose/química , Celulose/análogos & derivados , Polímeros/química , Tecnologia Farmacêutica/métodos , Pós , Solventes , Composição de Medicamentos/métodos , Comprimidos , Coloides , Preparações de Ação Retardada , Tensoativos/química , Ácidos Polimetacrílicos/química , Química Farmacêutica/métodos , Látex/química
2.
World J Microbiol Biotechnol ; 40(11): 334, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358641

RESUMO

The use of biosurfactants represents a promising technology for remediating hydrocarbon pollution in the environment. This study evaluated a highly effective biosurfactant strain-Bacillus cereus GX7's ability to produce biosurfactants from industrial and agriculture organic wastes. Bacillus cereus GX7 showed poor utilization capacity for oil soluble organic waste but effectively utilized of water- soluble organic wastes such as starch hydrolysate and wheat bran juice as carbon sources to enhance biosurfactant production. This led to significant improvements in surface tension and emulsification index. Corn steep liquor was also effective as a nitrogen source for Bacillus cereus GX7 in biosurfactant production. The biosurfactants produced by strain Bacillus cereus GX7 demonstrated a remediation effect on oily beach sand, but are slightly inferior to chemical surfactants. Inoculation with Bacillus cereus GX7 (70.36%) or its fermentation solution (94.38%) effectively enhanced the degradation efficiency of diesel oil in polluted seawater, surpassing that of indigenous degrading bacteria treatments (57.62%). Moreover, inoculation with Bacillus cereus GX7's fermentation solution notably improved the community structure by increasing the abundance of functional bacteria such as Pseudomonas and Stenotrophomonas in seawater. These findings suggest that the Bacillus cereus GX7 as a promising candidate for bioremediation of petroleum hydrocarbons.


Assuntos
Bacillus cereus , Biodegradação Ambiental , Fermentação , Hidrocarbonetos , Água do Mar , Tensoativos , Bacillus cereus/metabolismo , Tensoativos/metabolismo , Hidrocarbonetos/metabolismo , Água do Mar/microbiologia , Petróleo/metabolismo , Tensão Superficial
3.
Microb Cell Fact ; 23(1): 245, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261862

RESUMO

BACKGROUND: Sophorolipids are glycolipid biosurfactants with potential antibacterial, antifungal, and anticancer applications, rendering them promising for research. Therefore, this study hypothesizes that sophorolipids may have a notable impact on disrupting membrane integrity and triggering the production of reactive oxygen species, ultimately resulting in the eradication of pathogenic microbes. RESULTS: The current study resulted in the isolation of two Metschnikowia novel yeast strains. Sophorolipids production from these strains reached maximum yields of 23.24 g/l and 21.75 g/l, respectively, at the bioreactors level. Biosurfactants sophorolipids were characterized using FTIR and LC-MS techniques and found to be a mixture of acidic and lactonic forms with molecular weights of m/z 678 and 700. Our research elucidated sophorolipids' mechanism in disrupting bacterial and fungal membranes through ROS generation, confirmed by transmission electron microscopy and FACS analysis. The results showed that these compounds disrupted the membrane integrity and induced ROS production, leading to cell death in Klebsiella pneumoniae and Fusarium solani. In addition, the anticancer properties of sophorolipids were investigated on the A549 lung cancer cell line and found that sophorolipid-11D (SL-11D) and sophorolipid-11X (SL-11X) disrupted the actin cytoskeleton, as evidenced by immunofluorescence microscopy. The A549 cells were stained with Acridine orange/Ethidium bromide, which showed that they underwent necrosis. This was confirmed by flow cytometric analysis using Annexin/PI staining. The SL-11D and SL-11X molecules exhibited low levels of haemolytic activity and in-vitro cytotoxicity in HEK293, Caco-2, and L929 cell lines. CONCLUSION: In this work, novel yeast species CIG-11DT and CIG-11XT, isolated from the bee's gut, produce significant yields of sophorolipids without needing secondary oil sources, indicating a more economical production method. Our research shows that sophorolipids disrupt bacterial and fungal membranes via ROS production. They suggest they may act as chemo-preventive agents by inducing apoptosis in lung cancer cells, offering the potential for enhancing anticancer therapies.


Assuntos
Antifúngicos , Antineoplásicos , Metschnikowia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tensoativos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Humanos , Tensoativos/farmacologia , Tensoativos/metabolismo , Tensoativos/química , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Metschnikowia/metabolismo , Metschnikowia/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Glicolipídeos/farmacologia , Glicolipídeos/metabolismo , Testes de Sensibilidade Microbiana , Ácidos Oleicos
4.
Rev Bras Parasitol Vet ; 33(3): e009424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258600

RESUMO

In the aquaculture industry, biocides are routinely used to treat parasitosis in fish, and researchers are continually developing sustainable alternatives that can replace these harsh chemicals. In this context, the objective of this study was to evaluate the effectiveness of a new natural compound, BiokosTM, for the treatment against Epistylis sp. in Carassius auratus fish. The infestation was identified by the presence of whitish plaques on the integument of five animals, and the diagnosis was confirmed through skin scrapings. BiokosTM is a lipopeptide derived from the bacteria Pseudomonas that can destroy the functionality of the cell membrane of ciliated protozoa. The action of BiokosTM does not harm animals and the environment because the compound degrades into amino acids and fatty acids within days. A 0.15 m3 (150 L) aquarium was treated with an Ich-AwayTM water conditioner manufactured by the Danish company Sundew ApS, which has BiokosTM as the active ingredient. Six tablets were added to the water daily for two days, and new skin scrapings were performed. The fish were clinically well and no longer possessed lesions or parasites. The results obtained indicate that BiokosTM can be an innovative and more sustainable alternative for controlling epistyliasis in ornamental fish.


Assuntos
Doenças dos Peixes , Carpa Dourada , Lipopeptídeos , Pseudomonas , Animais , Carpa Dourada/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/tratamento farmacológico , Pseudomonas/isolamento & purificação , Pseudomonas/efeitos dos fármacos , Lipopeptídeos/uso terapêutico , Tensoativos , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/tratamento farmacológico , Hymenostomatida/efeitos dos fármacos
5.
BMC Complement Med Ther ; 24(1): 337, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304876

RESUMO

BACKGROUND: Drug combination therapy is preferred over monotherapy in clinical research to improve therapeutic effects. Developing a new nanodelivery system for cancer drugs can reduce side effects and provide several advantages, including matched pharmacokinetics and potential synergistic activity. This study aimed to examine and determine the efficiency of the gemini surfactants (GSs) as a pH-sensitive polymeric carrier and cell-penetrating agent in cancer cells to achieve dual drug delivery and synergistic effects of curcumin (Cur) combined with tamoxifen citrate (TMX) in the treatment of MCF-7 and MDA-MB-231 human BC cell lines. METHODS: The synthesized NPs were self-assembled using a modified nanoprecipitation method. The functional groups and crystalline form of the nanoformulation were examined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) used to assess zeta potential and particle size, and the morphological analysis determined by transmission electron microscopy (TEM). The anticancer effect was evaluated through an in vitro cytotoxicity MTT assay, flow cytometry analysis, and apoptosis analysis performed for mechanism investigation. RESULTS: The tailored NPs were developed with a size of 252.3 ± 24.6 nm and zeta potential of 18.2 ± 4.4 mV capable of crossing the membrane of cancer cells. The drug loading and release efficacy assessment showed that the loading of TMX and Cur were 93.84% ± 1.95% and 90.18% ± 0.56%, respectively. In addition, the drug release was more controlled and slower than the free state. Polymeric nanocarriers improved controlled drug release 72.19 ± 2.72% of Tmx and 55.50 ± 2.86% of Cur were released from the Tmx-Cur-Gs NPs after 72 h at pH = 5.5. This confirms the positive effect of polymeric nanocarriers on the controlled drug release mechanism. moreover, the toxicity test showed that combination-drug delivery was much more greater than single-drug delivery in MCF-7 and MDA-MB-231 cell lines. Cellular imaging showed excellent internalization of TMX-Cur-GS NPs in both MCF-7 and MDA-MB-231 cells and synergistic anticancer effects, with combination indices of 0.561 and 0.353, respectively. CONCLUSION: The combined drug delivery system had a greater toxic effect on cell lines than single-drug delivery. The synergistic effect of TMX and Cur with decreasing inhibitory concentrations could be a more promising system for BC-targeted therapy using GS NPs.


Assuntos
Neoplasias da Mama , Curcumina , Nanopartículas , Tensoativos , Tamoxifeno , Humanos , Curcumina/farmacologia , Curcumina/química , Tamoxifeno/farmacologia , Tamoxifeno/química , Nanopartículas/química , Neoplasias da Mama/tratamento farmacológico , Tensoativos/química , Tensoativos/farmacologia , Concentração de Íons de Hidrogênio , Feminino , Sinergismo Farmacológico , Células MCF-7 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química
6.
Pharmacol Res ; 208: 107400, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39251100

RESUMO

In aqueous environment amphiphilic molecules organize themselves into supramolecular structures deeply affecting the chemo-physical properties. Supramolecular assemby is also crucial in the pharmaceutical development of bioactive lipophilic molecules whose attitude to self-aggregate is a recognized factor affecting the in vivo pharmacokinetic, but can also play a crucial role in the interaction with the biological targets in in vitro tests. In aqueous solution, amphiphilic drugs exist in a complex equilibrium involving free monomers, oligomers and larger supramolecular aggregates held together by noncovalent bonds. In this review we focus our attention on the dual effect of drugs self-assembly, which can both reduce the availability of active compounds and create multivalent scaffolds, potentially improving binding affinity and avidity to cellular targets. We examine the effect of aggregation on different classes of amphiphatic molecules with significant biological activities, such as immunomodulatory, anti-tumor, antiviral, and antibiotic. Our purpose is to provide a comprehensive overview of how supramolecular chemistry influences the pharmacological and biological responses of amphiphilic molecules, emphasizing the need to consider these effects in early-stage drug development and in vitro testing. By elucidating these phenomena, this review aims to offer insights into optimizing drug design and formulation to overcome challenges posed by self-aggregation.


Assuntos
Coloides , Tensoativos , Humanos , Animais , Tensoativos/química , Tensoativos/farmacologia , Preparações Farmacêuticas/química
7.
Microb Cell Fact ; 23(1): 260, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343903

RESUMO

BACKGROUND: The production of surfactin, an extracellular accumulating lipopeptide produced by various Bacillus species, is a well-known representative of microbial biosurfactant. However, only limited information is available on the correlation between the growth rate of the production strain, such as B. subtilis BMV9, and surfactin production. To understand the correlation between biomass formation over time and surfactin production, the availability of glucose as carbon source was considered as main point. In fed-batch bioreactor processes, the B. subtilis BMV9 was used, a strain well-suited for high cell density fermentation. By adjusting the exponential feeding rates, the growth rate of the surfactin-producing strain, was controlled. RESULTS: Using different growth rates in the range of 0.075 and 0.4 h-1, highest surfactin titres of 36 g/L were reached at 0.25 h-1 with production yields YP/S of 0.21 g/g and YP/X of 0.7 g/g, while growth rates lower than 0.2 h-1 resulted in insufficient and slowed biomass formation as well as surfactin production (YP/S of 0.11 g/g and YP/X of 0.47 g/g for 0.075 h-1). In contrast, feeding rates higher than 0.25 h-1 led to a stimulation of overflow metabolism, resulting in increased acetate formation of up to 3 g/L and an accumulation of glucose due to insufficient conversion, leading to production yields YP/S of 0.15 g/g and YP/X of 0.46 g/g for 0.4 h-1. CONCLUSIONS: Overall, the parameter of adjusting exponential feeding rates have an important impact on the B. subtilis productivity in terms of surfactin production in fed-batch bioreactor processes. A growth rate of 0.25 h-1 allowed the highest surfactin production yield, while the total conversion of substrate to biomass remained constant at the different growth rates.


Assuntos
Bacillus subtilis , Biomassa , Reatores Biológicos , Fermentação , Glucose , Lipopeptídeos , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Lipopeptídeos/biossíntese , Lipopeptídeos/metabolismo , Glucose/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/metabolismo , Tensoativos/metabolismo
8.
ACS Appl Mater Interfaces ; 16(38): 50474-50483, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39287334

RESUMO

Organophosphate (OP) intoxication has become a severe common health matter all over the world. For the treatment of acute OP poisoning, the effective intracerebral delivery of acetylcholinesterase reactivators is crucial. Here, an amphiphilic hydrazide-pillar[5]arene (HP5A-6C), which could be readily integrated into liposomal bilayers' zwitterionic disaturated phosphatidylcholine (DSPC), was synthesized. A T7 peptide-containing guest (G) was attached on the surface via a noncovalent interaction to make mixed liposomes a particularly appealing candidate for brain-targeting delivery. Such coassembly could remain stable at room temperature for up to 6 weeks, and safety evaluations initially verified its fine biological compatibility. The hydrophilic interiors of T7/HP5A-6C@DSPC could further load HI-6 with 89.70% encapsulation efficiency. Support for brain-targeting potency came from imaging results. Notably, intravenous injection of HI-6-loaded vesicles exhibited a remarkable therapeutic effect on paraoxon (POX)-poisoned mice, effectively alleviating seizures and brain damage and significantly increasing the improving survival rate to 60% over the course of 7 days.


Assuntos
Calixarenos , Lipossomos , Paraoxon , Lipossomos/química , Animais , Camundongos , Paraoxon/toxicidade , Paraoxon/química , Calixarenos/química , Compostos de Amônio Quaternário/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Intoxicação por Organofosfatos/tratamento farmacológico , Masculino , Tensoativos/química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico
9.
Nanoscale ; 16(38): 17886-17892, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39248029

RESUMO

Herein, we report the synthesis of an alternating copolymer (ACP) with a bio-reducible amphiphilic polydisulfide backbone and highlight the impact of the alternating monomer connectivity on the self-assembly, morphology, chain-exchange dynamics, drug-release kinetics, and enzyme activity inhibition. Condensation polymerization between hydrophobic 1,10-bis(pyridin-2-yldisulfaneyl)decane and hydrophilic 2,3-mercaptosuccinic acid (1.04 : 1.00 ratio) generated amphiphilic ACP P1 (Mw = 8450 g mol-1, D = 1.3), which exhibited self-assembly in water, leading to the formation of an ultra-thin (height <5.0 nm) entangled fibrillar network. In contrast, structurally similar amphiphilic random copolymer P2 exhibited a truncated irregular disc-like morphology under the same conditions. It is postulated that due to the perfect alternating sequence of the hydrophobic and hydrophilic segments in P1, its immiscibility-driven aggregation in water leads to a pleated structure, which further assembles and forms the observed long fibrillar structures, similar to crystallization-driven self-assembly. In fact, wide-angle X-ray diffraction (WXRD) analysis of a lyophilized P1 sample showed sharp peaks, indicating its crystalline nature (approximately 37% crystallinity), and these were completely missing for P2. The effect of such distinct self-assembly on the chain-exchange dynamics was probed by fluorescence resonance energy transfer (FRET) using 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) as the FRET-donor and -acceptor, respectively. For DiI- and DiO-entrapped solutions of P1, when mixed, no prominent FRET appeared even after 24 h. In sharp contrast, for P2, intense FRET emission occurred, and the FRET ratio (approximately 0.9) reached saturation in approximately 15 h, indicating the greatly enhanced kinetic stability of P1 aggregates. Glutathione-induced release of encapsulated Nile red showed much slower kinetics for P1 compared to that of P2, which was corroborated by the observed slow chain-exchange dynamics of the highly stable alternating copolymer assembly. Furthermore, the well-ordered assembly of P1 exhibited an excellent surface-functional group display (zeta potential of -32 mV compared to -14 mV for P2), which resulted in the effective recognition of the α-chymotrypsin (Cht) protein surface by electrostatic interaction. Consequently, P1 significantly (>70%) suppressed the enzymatic activity of Cht, while in the presence of P2, the enzyme was still active with >70% efficacy.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Polímeros , Polímeros/química , Sulfetos/química , Liberação Controlada de Fármacos , Tensoativos/química , Transferência Ressonante de Energia de Fluorescência , Cinética
10.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339279

RESUMO

Olive mill wastewater (OMW) poses a significant environmental challenge and health concern in olive-producing countries, including Jordan. Surfactant micelles are frequently employed as solubilizing agents to enhance the water solubility of chemical compounds. This study aims to leverage the sodium dodecyl sulfate (SDS) micelles in a multi-step process to detoxify OMW for agricultural and industrial uses and reduce its impact. The OMW was treated in multiple steps: screening, coagulation with different chemicals, and distillation with different surfactants. The treatment steps were monitored using LC-MS, GC-MS, ICP-MS, chemical oxygen demand contents, and total phenolic compounds. The detoxification of OMW was evaluated using standard germination assays, MTT assays using tissue culture, and toxicity assays using fluorescence bacteria. Following the treatment, the seed growth rate improved significantly from 0% to 100%. The GC-MS revealed a substantial decrease in pollutants. The concentration of polyphenols was reduced to 2.5%, while the COD level decreased to 35%. The toxicity in bacteria was significantly reduced in a time-dependent manner, and the toxicity in human cells decreased by 95%. Additionally, between 50% and 95% of metals in OMW were removed. The multi-step SDS-based approach successfully detoxified the OMW and enhanced water quality, which would pave the road for its direct application in industry and agriculture.


Assuntos
Olea , Tensoativos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Tensoativos/química , Humanos , Olea/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Dodecilsulfato de Sódio/química , Cromatografia Gasosa-Espectrometria de Massas , Resíduos Industriais/análise , Análise da Demanda Biológica de Oxigênio
11.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339281

RESUMO

In this paper, a series of tetrameric surfactants (4CnSAZs, n = 12, 14, 16) endowed with zwitterionic characteristic were synthesized by a simple and convenient method and their structures were characterized by FT-IR, 1H NMR and elemental analysis. Their physicochemical properties were studied using the Wilhelmy plate method, fluorescence spectra and dynamic light scattering technique. 4CnSAZs have higher surface activities and tend to adsorb at the air/water surface rather than self-assembling in aqueous solution. The thermodynamic parameters obtained from surface tension measurements show that both processes of adsorption and micellization of 4CnSAZs are spontaneous and that the micellization processes of 4CnSAZs are entropy-driven processes. Both adsorption and micellization of 4CnSAZs are inclined to occur with the increase of alkyl chain length or temperature. For 4C12SAZs, there are only small-size aggregates (micelles), while the large aggregates (vesicles) are observed at the alkyl length of 4CnSAZs of 14 or 16. This shows that the alkyl chain length for oligomeric surfactants has a greater sensitivity for aggregate growth. The aggregate morphologies obtained from the calculated values of critical packing parameter (p) for 4C14SAZs and 4C16SAZs can be supported by the DLS measurement results. The test results obtained by the separation-water-time method show that 4CnSAZs have good emulsification performance and that the prepared emulsions appear to exit in the form of multiple emulsions. In addition, 4CnSAZs have good antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The present study reveals the unique behavior of a zwitterionic tetrameric surfactant and may give new insights into molecular design and synthesis of a high degree of surfactants with different structure characteristics for potential application in various industrial fields.


Assuntos
Antibacterianos , Tensoativos , Tensoativos/química , Tensoativos/farmacologia , Tensoativos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Tensão Superficial , Termodinâmica , Emulsões/química , Testes de Sensibilidade Microbiana , Micelas , Staphylococcus aureus/efeitos dos fármacos , Adsorção , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos
12.
Molecules ; 29(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339416

RESUMO

Triacontanol is a long-chain primary alcohol derived from policosanol, known for its diverse biological activities, including functioning as a plant growth regulator and exhibiting anti-inflammatory and antitumoral effects. However, its application is limited due to its high hydrophobicity, resulting in poor absorption and reduced therapeutic effectiveness. A potential solution to this problem is the use of niosomes. Niosomes are carriers composed of non-ionic surfactants, cholesterol, charge-inducing agents, and a hydration medium. They are effective in encapsulating drugs, improving their solubility and bioavailability. The objective of this study was to optimize and synthesize nano-niosomes for the encapsulation of triacontanol. Niosomes were synthesized using a thin-film hydration method combined with ultrasonication, following a Box-Behnken design. Niosomes were characterized using various techniques including dynamic light scattering, Fourier-transform infrared spectroscopy (FTIR), confocal microscopy, high-resolution scanning electron microscopy, and transmission electron microscopy (TEM). Formulation 14 of niosomes achieved the desired size, polydispersity index (0.198 ± 0.008), and zeta potential (-31.28 ± 1.21). FTIR analysis revealed a characteristic signal in the 3400-300 cm-1 range, indicating intermolecular interactions due to a bifurcated hydrogen bond between cholesterol and S60. Confocal microscopy confirmed the presence of triacontanol through Nile Red fluorescence. TEM revealed the spherical structure of niosomes.


Assuntos
Álcoois Graxos , Lipossomos , Lipossomos/química , Álcoois Graxos/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Portadores de Fármacos/química , Solubilidade , Composição de Medicamentos/métodos , Colesterol/química , Tensoativos/química
13.
Anal Chem ; 96(39): 15797-15807, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39285721

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) technology has opened a new path for molecular diagnostics based on RNA programmed trans-cleavage activity. However, their accessibility for highly sensitive clinical diagnostics remains insufficient. In this study, we systematically investigated the impact of various surfactants on the CRISPR-Cas12a system and found that poly(vinylpyrrolidone) (PVP), a nonionic surfactant, showed the highest enhancement effect among these tested surfactants. Additionally, the enhancement effects of PVP are compatible and versatile to CRISPR-Cas12b and Cas13a systems, improving the sensitivity of these CRISPR-Cas systems toward synthetic targets by 1-2 orders of magnitude. By integrating the PVP-enhanced CRISPR system with isothermal nucleic acid amplification, both the two- and one-step assays exhibited comparable sensitivity and specificity to gold-standard quantitative polymerase chain reaction (qPCR) in the assay of clinical human papillomavirus (HPV) samples, thereby holding significant promise for advancing clinical diagnostics and biomedical research.


Assuntos
Sistemas CRISPR-Cas , Povidona , Sistemas CRISPR-Cas/genética , Povidona/química , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Tensoativos/química , Papillomaviridae/genética
14.
ACS Nano ; 18(39): 26839-26847, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39287594

RESUMO

Diblock oligomeric peptide-polymer amphiphiles (PPAs) are biohybrid materials that offer versatile functionality by integrating the sequence-dependent properties of peptides with the synthetic versatility of polymers. Despite their potential as biocompatible materials, the rational design of PPAs for assembly into multichain nanoparticles remains challenging due to the complex intra- and intermolecular interactions emanating from the polymer and peptide segments. To systematically explore the impact of monomer composition on nanoparticle assembly, PPAs were synthesized with a random coil peptide (XTEN2) and oligomeric alkyl acrylates with different side chains: ethyl, tert-butyl, n-butyl, and cyclohexyl. Experimental characterization using electron and atomic force microscopies demonstrated that the tail hydrophobicity impacted accessible morphologies. Moreover, the characterization of different assembly protocols (i.e., bath sonication and thermal annealing) revealed that certain tail compositions provide access to kinetically trapped assemblies. All-atom molecular dynamics simulations of micelle formation unveiled key interactions and differences in core hydration, dictating the PPA assembly behavior. These findings highlight the complexity of PPA assembly dynamics and serve as valuable benchmarks to guide the design of PPAs for a variety of applications, including catalysis, mineralization, targeted sequestration, antimicrobial activity, and cargo transportation.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Polímeros , Peptídeos/química , Peptídeos/síntese química , Peptídeos/farmacologia , Polímeros/química , Polímeros/síntese química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Tensoativos/química , Tensoativos/síntese química , Tamanho da Partícula , Nanopartículas/química
15.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274909

RESUMO

The influence of adding surfactants on the performance of high-solid anaerobic digestion of horticultural waste was extensively investigated in batch systems. Adding Tween series and polyethylene glycol series non-ionic surfactants had positive effects on biogas production, resulting in 370.1 mL/g VS and 256.6 mL/g VS with Tween 60 and polyethylene glycol 300 at a surfactant-to-grass mass ratio of 0.20, while the biogas production of anaerobic digestion without surfactants was 107.54 mL/g VS. The optimal and economically feasible choice was adding Tween 20 at a ratio of 0.08 g/g grass in high-solid anaerobic digestion. A kinetics model reliably represented the relationship between surfactant concentration and biogas production. The mechanism of surfactants working on lignocellulose was investigated. The improvement in high-solid anaerobic digestion by adding surfactants was attributed to the interaction between lignocelluloses and surfactants and the extraction of biodegradable fractions from the porous structure. An economic analysis showed that adding Tween 20 was likely to make a profit and be more feasible than adding Tween 60 and polyethylene glycol 300. This study confirms the enhancement in biogas production from horticultural waste by adding non-ionic surfactants.


Assuntos
Biocombustíveis , Lignina , Tensoativos , Tensoativos/química , Anaerobiose , Lignina/química , Polissorbatos/química , Polietilenoglicóis/química , Biodegradação Ambiental , Reatores Biológicos , Cinética
16.
AAPS PharmSciTech ; 25(7): 203, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237802

RESUMO

Normal skin is the first line of defense in the human body. A burn injury makes the skin susceptible to bacterial infection, thereby delaying wound healing and ultimately leading to sepsis. The chances of biofilm formation are high in burn wounds due to the presence of avascular necrotic tissue. The most common pathogen to cause burn infection and biofilm is Pseudomonas aeruginosa. The purpose of this study was to create a microemulsion (ME) formulation for topical application to treat bacterial burn infection. In the present study, tea tree oil was used as the oil phase, Tween 80 and transcutol were used as surfactants, and water served as the aqueous phase. Pseudo ternary phase diagrams were used to determine the design space. The ranges of components as suggested by the design were chosen, optimization of the microemulsion was performed, and in vitro drug release was assessed. Based on the characterization studies performed, it was found that the microemulsion were formulated properly, and the particle size obtained was within the desired microemulsion range of 10 to 300 nm. The I release study showed that the microemulsion followed an immediate release profile. The formulation was further tested based on its ability to inhibit biofilm formation and bacterial growth. The prepared microemulsion was capable of inhibiting biofilm formation.


Assuntos
Antibacterianos , Biofilmes , Queimaduras , Sistemas de Liberação de Medicamentos , Emulsões , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Tamanho da Partícula , Liberação Controlada de Fármacos , Tensoativos/química , Polissorbatos/química , Óleo de Melaleuca/administração & dosagem , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia , Química Farmacêutica/métodos , Humanos
17.
AAPS PharmSciTech ; 25(7): 221, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317842

RESUMO

This study aims to enhance the solubility of Olaparib, classified as biopharmaceutical classification system (BCS) class IV due to its low solubility and bioavailability using a solid self-nanoemulsifying drug delivery system (S-SNEDDS). For this purpose, SNEDDS formulations were created using Capmul MCM as the oil, Tween 80 as the surfactant, and PEG 400 as the co-surfactant. The SNEDDS formulation containing olaparib (OLS-352), selected as the optimal formulation, showed a mean droplet size of 87.0 ± 0.4 nm and drug content of 5.53 ± 0.09%. OLS-352 also demonstrated anticancer activity against commonly studied ovarian (SK-OV-3) and breast (MCF-7) cancer cell lines. Aerosil® 200 and polyvinylpyrrolidone (PVP) K30 were selected as solid carriers, and S-SNEDDS formulations were prepared using the spray drying method. The drug concentration in S-SNEDDS showed no significant changes (98.4 ± 0.30%, 25℃) with temperature fluctuations during the 4-week period, demonstrating improved storage stability compared to liquid SNEDDS (L-SNEDDS). Dissolution tests under simulated gastric and intestinal conditions revealed enhanced drug release profiles compared to those of the raw drug. Additionally, the S-SNEDDS formulation showed a fourfold greater absorption in the Caco-2 assay than the raw drug, suggesting that S-SNEDDS could improve the oral bioavailability of poorly soluble drugs like olaparib, thus enhancing therapeutic outcomes. Furthermore, this study holds significance in crafting a potent and cost-effective pharmaceutical formulation tailored for the oral delivery of poorly soluble drugs.


Assuntos
Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Ftalazinas , Piperazinas , Solubilidade , Piperazinas/química , Piperazinas/administração & dosagem , Piperazinas/farmacocinética , Humanos , Ftalazinas/química , Ftalazinas/administração & dosagem , Ftalazinas/farmacocinética , Ftalazinas/farmacologia , Emulsões/química , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Química Farmacêutica/métodos , Tamanho da Partícula , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacologia , Tensoativos/química , Portadores de Fármacos/química , Polietilenoglicóis/química , Células MCF-7 , Liberação Controlada de Fármacos , Nanopartículas/química , Composição de Medicamentos/métodos
18.
Environ Sci Pollut Res Int ; 31(43): 55099-55118, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243327

RESUMO

The quest for scientifically advanced and sustainable solutions is driven by growing environmental and economic issues associated with coal mining, processing, and utilization. Consequently, within the coal industry, there is a growing recognition of the potential of microbial applications in fostering innovative technologies. Microbial-based coal solubilization, coal beneficiation, and coal dust suppression are green alternatives to traditional thermochemical and leaching technologies and better meet the need for ecologically sound and economically viable choices. Surfactant-mediated approaches have emerged as powerful tools for modeling, simulation, and optimization of coal-microbial systems and continue to gain prominence in clean coal fuel production, particularly in microbiological co-processing, conversion, and beneficiation. Surfactants (surface-active agents) are amphiphilic compounds that can reduce surface tension and enhance the solubility of hydrophobic molecules. A wide range of surfactant properties can be achieved by either directly influencing microbial growth factors, stimulants, and substrates or indirectly serving as frothers, collectors, and modifiers in the processing and utilization of coal. This review highlights the significant biotechnological potential of surfactants by providing a thorough overview of their involvement in coal biodegradation, bioprocessing, and biobeneficiation, acknowledging their importance as crucial steps in coal consumption.


Assuntos
Biodegradação Ambiental , Carvão Mineral , Tensoativos , Tensoativos/química , Biotecnologia
19.
J Biotechnol ; 394: 85-91, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39178917

RESUMO

The degummed wastewater from silk processing contains a huge amount of amino acids and polypeptides from sericin. The silk degumming water is far from being exploited fully. Sericin in the degumming water is generally wasted and causes environmental pollution. In this study, simulated silk degumming water was hydrolyzed by alkaline protease to produce abundant amino acids and polypeptides. After enzymatic hydrolysis, the maximum free amino groups concentration in the silk degumming water was approximately 54 mM. It facilitated the recycling of silk degumming water for the production of melanin-like amino acid surfactants as raw materials. 4-Tert-butylcatechol was used as the starting material to generate o-quinone via oxidation by ceric ammonium nitrate. o-Quinone was coupled with free amino groups in enzymatic hydrolysates of silk degumming water to synthesize a sericin-based amino acid surfactant as hydrophobic and hydrophilic group, respectively. Through the green and simple synthesis route, the product was characterized to have a novel melanin-like structure. The product exhibited superior surface-active properties by lowering the surface tension to 32.39 mN m-1. Furthermore, it demonstrated good foaming ability and foam stability, with the initial foam volume of 37 mL and the foam half-life time of more than 25 min. The product owned a good emulsification ability in the oil-water emulsion with delamination time of 297 s and 291 s for emulsion formed by soybean oil and liquid paraffin, respectively. The wetting time of the canvas sheet was only 134 s. Consequently, the product showed low surface tension, good foaming, emulsifying, and wetting properties.


Assuntos
Aminoácidos , Melaninas , Sericinas , Seda , Tensoativos , Tensoativos/química , Aminoácidos/química , Seda/química , Sericinas/química , Melaninas/química , Melaninas/metabolismo , Hidrólise , Águas Residuárias/química , Água/química , Tensão Superficial
20.
Bioresour Technol ; 408: 131211, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39102966

RESUMO

Biosurfactants are surface-active compounds produced by numerous microorganisms. They have gained significant attention due to their wide applications in food, pharmaceuticals, cosmetics, agriculture, and environmental remediation. The production efficiency and yield of microbial biosurfactants have improved significantly through the development and optimization of different process parameters. This review aims to provide an in-depth analysis of recent trends and developments in microbial biosurfactant production strategies, including submerged, solid-state, and co-culture fermentation. Additionally, review discusses biosurfactants' applications, challenges, and future perspectives. It highlights their advantages over chemical surfactants, emphasizing their biodegradability, low toxicity, and diverse chemical structures. However, the critical challenges in commercializing include high production costs and low yield. Strategies like genetic engineering, process optimization, and downstream processing, have been employed to address these challenges. The review provides insights into current commercial producers and highlights future perspectives such as novel bioprocesses, efficient microbial strains, and exploring their applications in emerging industries.


Assuntos
Tensoativos , Tensoativos/química , Tensoativos/metabolismo , Fermentação , Bactérias/metabolismo , Biotecnologia/métodos , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA