Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.115
Filtrar
1.
Ren Fail ; 46(2): 2409348, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39356055

RESUMO

BACKGROUND: Diabetic kidney disease (DKD), a prevalent complication of diabetes mellitus, is often associated with acute kidney injury (AKI). Thus, the development of preventive and therapeutic strategies is crucial for delaying the progression of AKI and DKD. METHODS: The GSE183276 dataset, comprising the data of 20 healthy controls and 12 patients with AKI, was downloaded from the Gene Expression Omnibus (GEO) database to analyze the AKI group. For analyzing the DKD group, the GSE131822 dataset, comprising the data of 3 healthy controls and 3 patients with DKD, was downloaded from the GEO database. The common differentially expressed genes (DEGs) in renal tubular epithelial cells (TECs) were subjected to enrichment analyses. Next, a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes database to analyze gene-related regulatory networks. Finally, the AKI animal models and the DKD and AKI cell models were established, and the reliability of the identified genes was validated using quantitative real-time polymerase chain reaction analysis. RESULTS: Functional analysis was performed with 40 common DEGs in TECs. Eight hub genes were identified using the PPI and gene-related networks. Finally, validation experiments with the in vivo animal model and the in vitro cellular model revealed the four common DEGs. Four DEGs that share molecular mechanisms in the pathogenesis of DKD and AKI were identified. In particular, the expression of Integrin Subunit Beta 6(ITGB6), a hub and commonly upregulated gene, was upregulated in the in vitro models. CONCLUSION: ITGB6 may serve as a biomarker for early AKI diagnosis in patients with DKD and as a target for early intervention therapies.


Assuntos
Injúria Renal Aguda , Biomarcadores , Nefropatias Diabéticas , Injúria Renal Aguda/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/diagnóstico , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Humanos , Biomarcadores/metabolismo , Animais , Mapas de Interação de Proteínas/genética , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Análise de Célula Única , Masculino , Redes Reguladoras de Genes , Camundongos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Túbulos Renais/patologia , Perfilação da Expressão Gênica , Estudos de Casos e Controles
2.
Sci Transl Med ; 16(767): eadk5005, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356748

RESUMO

Acute kidney injury (AKI) is a frequent and challenging clinical condition associated with high morbidity and mortality and represents a common complication in critically ill patients with COVID-19. In AKI, renal tubular epithelial cells (TECs) are a primary site of damage, and recovery from AKI depends on TEC plasticity. However, the molecular mechanisms underlying adaptation and maladaptation of TECs in AKI remain largely unclear. Here, our study of an autopsy cohort of patients with COVID-19 provided evidence that injury of TECs by myoglobin, released as a consequence of rhabdomyolysis, is a major pathophysiological mechanism for AKI in severe COVID-19. Analyses of human kidney biopsies, mouse models of myoglobinuric and gentamicin-induced AKI, and mouse kidney tubuloids showed that TEC injury resulted in activation of the glucocorticoid receptor by endogenous glucocorticoids, which aggravated tubular damage. The detrimental effect of endogenous glucocorticoids on injured TECs was exacerbated by the administration of a widely clinically used synthetic glucocorticoid, dexamethasone, as indicated by experiments in mouse models of myoglobinuric- and folic acid-induced AKI, human and mouse kidney tubuloids, and human kidney slice cultures. Mechanistically, studies in mouse models of AKI, mouse tubuloids, and human kidney slice cultures demonstrated that glucocorticoid receptor signaling in injured TECs orchestrated a maladaptive transcriptional program to hinder DNA repair, amplify injury-induced DNA double-strand break formation, and dampen mTOR activity and mitochondrial bioenergetics. This study identifies glucocorticoid receptor activation as a mechanism of epithelial maladaptation, which is functionally important for AKI.


Assuntos
Injúria Renal Aguda , COVID-19 , Células Epiteliais , Glucocorticoides , Receptores de Glucocorticoides , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Humanos , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , COVID-19/complicações , COVID-19/metabolismo , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Receptores de Glucocorticoides/metabolismo , Modelos Animais de Doenças , Masculino , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Mioglobina/metabolismo , Dexametasona/farmacologia , Dexametasona/efeitos adversos , Estresse Fisiológico/efeitos dos fármacos , SARS-CoV-2 , Camundongos Endogâmicos C57BL , Feminino
3.
FASEB J ; 38(17): e23875, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39229897

RESUMO

Polycystic kidney disease (PKD) is a common hereditary kidney disease. Although PKD occurrence is associated with certain gene mutations, its onset regulatory mechanisms are still not well understood. Here, we first report that the key enzyme geranylgeranyl diphosphate synthase (GGPPS) is specifically expressed in renal tubular epithelial cells of mouse kidneys. We aimed to explore the role of GGPPS in PKD. In this study, we established a Ggppsfl/fl:Cdh16cre mouse model and compared its phenotype with that of wild-type mice. A Ggpps-downregulation HK2 cell model was also used to further determine the role of GGPPS. We found that GGPPS was specifically expressed in renal tubular epithelial cells of mouse kidneys. Its expression also increased with age. Low GGPPS expression was observed in human ADPKD tissues. In the Ggppsfl/fl:Cdh16cre mouse model, Ggpps deletion in renal tubular epithelial cells induced the occurrence and development of renal tubule cystic dilation and caused the death of mice after birth due to abnormal renal function. Enhanced proliferation of cyst-lining epithelial cells was also observed after the knockout of Ggpps. These processes were related to the increased rate of Rheb on membrane/cytoplasm and hyperactivation of mTORC1 signaling. In conclusion, the deficiency of GGPPS in kidney tubules induced the formation of renal cysts. It may play a critical role in PKD pathophysiology. A novel therapeutic strategy could be designed according to this work.


Assuntos
Túbulos Renais , Animais , Camundongos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Humanos , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/metabolismo , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Camundongos Knockout , Linhagem Celular , Complexos Multienzimáticos
4.
Nat Commun ; 15(1): 7963, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261453

RESUMO

Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin ß1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin ß1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin ß1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.


Assuntos
Senescência Celular , Nefropatias Diabéticas , Fator XII , Integrina beta1 , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Feminino , Humanos , Masculino , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Fator XII/metabolismo , Fator XII/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Transdução de Sinais
5.
BMC Nephrol ; 25(1): 297, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251943

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS: The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS: HG induced an increase in the expression of P4HB and TGFß, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. CONCLUSION: P4HB regulated the TGFß/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Fibrose , Glucose , Túbulos Renais , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta , Humanos , Proteína Smad3/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/farmacologia , Glucose/toxicidade , Glucose/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Fator de Crescimento Transformador beta/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Espécies Reativas de Oxigênio/metabolismo
6.
Cell Mol Life Sci ; 81(1): 385, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235496

RESUMO

Cisplatin-induced renal tubular injury largely restricts the wide-spread usage of cisplatin in the treatment of malignancies. Identifying the key signaling pathways that regulate cisplatin-induced renal tubular injury is thus clinically important. PARVB, a focal adhesion protein, plays a crucial role in tumorigenesis. However, the function of PARVB in kidney disease is largely unknown. To investigate whether and how PARVB contributes to cisplatin-induced renal tubular injury, a mouse model (PARVB cKO) was generated in which PARVB gene was specifically deleted from proximal tubular epithelial cells using the Cre-LoxP system. In this study, we found depletion of PARVB in proximal tubular epithelial cells significantly attenuates cisplatin-induced renal tubular injury, including tubular cell death and inflammation. Mechanistically, PARVB associates with transforming growth factor-ß-activated kinase 1 (TAK1), a central regulator of cell survival and inflammation that is critically involved in mediating cisplatin-induced renal tubular injury. Depletion of PARVB promotes cisplatin-induced TAK1 degradation, inhibits TAK1 downstream signaling, and ultimately alleviates cisplatin-induced tubular cell damage. Restoration of PARVB or TAK1 in PARVB-deficient cells aggravates cisplatin-induced tubular cell injury. Finally, we demonstrated that PARVB regulates TAK1 protein expression through an E3 ligase ITCH-dependent pathway. PARVB prevents ITCH association with TAK1 to block its ubiquitination. Our study reveals that PARVB deficiency protects against cisplatin-induced tubular injury through regulation of TAK1 signaling and indicates targeting this pathway may provide a novel therapeutic strategy to alleviate cisplatin-induced kidney damage.


Assuntos
Cisplatino , MAP Quinase Quinase Quinases , Camundongos Knockout , Transdução de Sinais , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Animais , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Antineoplásicos/farmacologia , Antineoplásicos/efeitos adversos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal
7.
Phytomedicine ; 134: 155991, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217653

RESUMO

BACKGROUND: Renal tubular injury induced by free fatty acid bound to albumin is the key pathological basis for the progression of diabetic kidney disease. However, effective interventions are limited. Astragaloside IV, as a major bioactive component purified from Astragalus membranaceus (Fisch.) Bunge, possesses pharmacological properties of lowering blood glucose and proteinuria, and renal tubular protection in diabetic kidney disease. Further work is needed to understand the underlying molecular mechanisms. PURPOSE: This study was designed to investigate the mechanism of renal tubular protection by astragaloside IV in diabetic kidney disease. METHODS: Rats receiving high-fat diet combined with streptozotocin (30 mg/kg, i.p.) were gavaged with astragaloside IV (10 mg/kg/d or 20 mg/kg/d) or empagliflozin (1.72 mg/kg/d) for 8 weeks. In vitro, the NRK-52E cells were treated with free fatty acid-deleted BSA or palmitic acid-bound BSA in the presence or absence of astragaloside IV (5 µM, 10 µM, 20 µM) or 5 µM of mcc950. The effects of astragaloside IV on mitochondrial function, NLRP3/ASC/IL-18/IL-1ß inflammatory cascade, and renal tubular injury were detected by pathological staining, immunoblotting, MitoSOX Red staining. Next, to investigate the mechanism of renal tubular protection by astragaloside IV, we transfected Fatp2 siRNA into BSA-PA-treated NRK-52E cells and injected lipofermata (a FATP2 inhibitor) intraperitoneally into free fatty acid-bound BSA overloaded rats with concomitant astragaloside IV treatment. RESULTS: Treatment with astragaloside IV for 8 weeks dose-dependently attenuated the blood glucose, ratio of urinary albumin to creatinine, disorder of lipid metabolism, and pathological injury in diabetic kidney disease rats. In addition, astragaloside IV dose-dependently attenuated mitochondrial-derived reactive oxygen species and subsequent inhibiting NLRP3-mediated inflammatory cascade in diabetic kidney disease rats and palmitic acid-bound BSA-treated NRK-52E cells, thereby exerting renal tubular protection. More importantly, the effects of astragaloside IV on restoration of mitochondrial function, inhibition of inflammatory response and amelioration of renal tubular injury in vivo and in vitro were further enhanced when used in combination with Fatp2 siRNA or lipofermata. CONCLUSION: Astragaloside IV exerts antioxidant and anti-inflammatory effects in diabetic kidney disease by inhibiting FATP2-mediated fatty acid transport, thereby attenuating renal tubular injury.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Túbulos Renais , Saponinas , Triterpenos , Animais , Masculino , Ratos , Astragalus propinquus/química , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Interleucina-1beta/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Transportador 2 de Glucose-Sódio , Triterpenos/farmacologia
8.
Shock ; 62(4): 574-581, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227395

RESUMO

ABSTRACT: Background: The kidney is the most commonly affected organ in sepsis patients, and Krüppel-like transcription factor 15 (KLF15) has a kidney-protective effect and is highly enriched in the kidneys. This study aims to explore the role of KLF15 in sepsis-related acute kidney injury. Methods: A septic injury model in HK2 cells was established through the administration of lipopolysaccharide (LPS), followed by the transfection of an overexpression plasmid for KLF15. Cell viability was assessed using Cell Counting Kit-8 assay, and apoptosis was measured via flow cytometry. The levels of inflammatory cytokines were detected using ELISA, and western blot assay was employed to assess the expression of KLF15, PPARδ, as well as inflammatory and apoptosis-related proteins. The interaction between KLF15 and PPARδ was confirmed through the utilization of online databases and immunoprecipitation experiments. The mechanism was further validated using PPARδ agonists and small interfering RNA. Results: LPS-induced HK2 cells showed downregulated expression of KLF15 and PPARδ, along with decreased viability, accompanied by increased levels of apoptosis, TNFα, IL-1ß, and IL-6. Additionally, LPS upregulated the expression of Bax, cytoplasmic cytochrome C [Cytc (cyt)], Cox-2, and p-NF-κB-p65 in HK2 cells, while simultaneously downregulating the expression of Bcl2 and mitochondrial cytochrome c [Cytc (mit)]. immunoprecipitation experiment revealed a possible interaction between KLF15 and PPARδ in HK2 cells. Ov-KLF15, Ov-PPARδ, or administration of PPARδ agonists effectively alleviated the aforementioned alterations induced by LPS. However, interference with PPARδ significantly attenuated the protective effect of Ov-KLF15 on HK2 cells. Conclusion: KLF15 attenuates LPS-induced apoptosis and inflammatory responses in HK2 cells via PPARδ.


Assuntos
Apoptose , Células Epiteliais , Inflamação , Túbulos Renais , Fatores de Transcrição Kruppel-Like , Lipopolissacarídeos , PPAR delta , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Apoptose/efeitos dos fármacos , Humanos , PPAR delta/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Inflamação/metabolismo , Linhagem Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Injúria Renal Aguda/metabolismo
9.
PLoS One ; 19(9): e0310947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39325731

RESUMO

BACKGROUND: Kidney stone formation is a common disease that causes a significant threat to human health. The crystallization mechanism of calcium oxalate, the most common type of kidney stone, has been extensively researched, yet the damaging effects and mechanisms of calcium oxalate crystals on renal tubular epithelial cells remain incompletely elucidated. Regulated mitochondrial dynamics is essential for eukaryotic cells, but its role in the occurrence and progression of calcium oxalate (CaOx) nephrolithiasis is not yet understood. METHODS: An animal model of calcium oxalate-related nephrolithiasis was established in adult male Sprague‒Dawley (SD) rats by continuously administering drinking water containing 1% ethylene glycol for 28 days. The impact of calcium oxalate crystals on mitochondrial dynamics and apoptosis in renal tubular epithelial cells was investigated using HK2 cells in vitro. Blood samples and bilateral kidney tissues were collected for histopathological evaluation and processed for tissue injury, inflammation, fibrosis, oxidative stress detection, and mitochondrial dynamics parameter analysis. RESULTS: Calcium oxalate crystals caused higher levels of mitochondrial fission and apoptosis in renal tubular epithelial cells both in vivo and in vitro. Administration of a PPARγ agonist significantly alleviated mitochondrial fission and apoptosis in renal tubular epithelial cells, and improved renal function, accompanied by reduced levels of oxidative stress, increased antioxidant enzyme expression, alleviation of inflammation, and reduced fibrosis in vivo. CONCLUSION: Our results indicated that increased mitochondrial fission in renal tubular epithelial cells is a critical component of kidney injury caused by calcium oxalate stones, leading to the accumulation of reactive oxygen species within the tissue and the subsequent initiation of apoptosis. Regulating mitochondrial dynamics represents a promising approach for calcium oxalate nephrolithiasis.


Assuntos
Apoptose , Oxalato de Cálcio , Células Epiteliais , Túbulos Renais , Dinâmica Mitocondrial , Nefrolitíase , PPAR gama , Ratos Sprague-Dawley , Animais , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Nefrolitíase/metabolismo , Nefrolitíase/tratamento farmacológico , Nefrolitíase/patologia , Ratos , PPAR gama/metabolismo , PPAR gama/agonistas , Oxalato de Cálcio/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Animais de Doenças
10.
Cell Mol Life Sci ; 81(1): 404, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39277835

RESUMO

Proliferation of renal tubular epithelial cells (TEC) is essential for restoring tubular integrity and thereby to support renal functional recovery from kidney ischemia/reperfusion (KI/R) injury. Activation of transcriptional factor c-Myc promotes TEC proliferation following KI/R; however, the mechanism regarding c-Myc activation in TEC is incompletely known. Heat shock protein A12A (HSPA12A) is an atypic member of HSP70 family. In this study, we found that KI/R decreased HSPA12A expression in mouse kidneys and TEC, while ablation of HSPA12A in mice impaired TEC proliferation and renal functional recovery following KI/R. Gain-of-functional studies demonstrated that HSPA12A promoted TEC proliferation upon hypoxia/reoxygenation (H/R) through directly interacting with c-Myc and enhancing its nuclear localization to upregulate expression of its target genes related to TEC proliferation. Notably, c-Myc was lactylated in TEC after H/R, and this lactylation was enhanced by HSPA12A overexpression. Importantly, inhibition of c-Myc lactylation attenuated the HSPA12A-induced increases of c-Myc nuclear localization, proliferation-related gene expression, and TEC proliferation. Further experiments revealed that HSPA12A promoted c-Myc lactylation via increasing the glycolysis-derived lactate generation in a Hif1α-dependent manner. The results unraveled a role of HSPA12A in promoting TEC proliferation and facilitating renal recovery following KI/R, and this role of HSPA12A was achieved through increasing lactylation-mediated c-Myc activation. Therefore, targeting HSPA12A in TEC might be a viable strategy to promote renal functional recovery from KI/R injury in patients.


Assuntos
Proliferação de Células , Células Epiteliais , Proteínas de Choque Térmico HSP70 , Túbulos Renais , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Humanos , Rim/metabolismo , Rim/patologia
11.
Ren Fail ; 46(2): 2369342, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39230047

RESUMO

Sepsis represents an organ dysfunction resulting from the host's maladjusted response to infection, and can give rise to acute kidney injury (AKI), which significantly increase the morbidity and mortality of septic patients. This study strived for identifying a novel therapeutic strategy for patients with sepsis-induced AKI (SI-AKI). Rat tubular epithelial NRK-52E cells were subjected to lipopolysaccharide (LPS) exposure for induction of in-vitro SI-AKI. The expressions of E1A binding protein p300 (EP300) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in NRK-52E cells were assessed by western blot and qRT-PCR, and their interaction was explored by chromatin immunoprecipitation performed with antibody for H3K27 acetylation (H3K27ac). The effect of them on SI-AKI-associated mitochondrial dysfunction of tubular epithelial cells was investigated using transfection, MTT assay, TUNEL staining, 2',7'-Dichlorodihydrofluorescein diacetate probe assay, Mitosox assay, and JC-1 staining. MTHFD2 and EP300 were upregulated by LPS exposure in NRK-52E cells. LPS increased the acetylation of H3 histone in the MTHFD2 promoter region, and EP300 suppressed the effect of LPS. EP300 ablation inhibited the expression of MTHFD2. MTHFD2 overexpression antagonized LPS-induced viability reduction, apoptosis promotion, reactive oxygen species overproduction, and mitochondrial membrane potential collapse of NRK-52E cells. By contrast, MTHFD2 knockdown and EP300 ablation brought about opposite consequences. Furthermore, MTHFD2 overexpress and EP300 ablation counteracted each other's effect in LPS-exposed NRK-52E cells. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction of tubular epithelial cells in SI-AKI.


Assuntos
Injúria Renal Aguda , Proteína p300 Associada a E1A , Células Epiteliais , Lipopolissacarídeos , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Mitocôndrias , Animais , Ratos , Acetilação , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Proteína p300 Associada a E1A/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular , Histonas/metabolismo , Apoptose , Sepse/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Regulação para Cima
12.
Ren Fail ; 46(2): 2403653, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39291665

RESUMO

Objectives: The aim of this study was to investigate the mechanism of itaconate's potential effect in diabetic kidney disease.Methods: Renal immune responsive gene 1 (IRG1) levels were measured in db/db mice and streptozotocin (STZ) + high-fat diet (HFD)-induced diabetic mice. Irg1 knockout mice were generated. db/db mice were treated with 4-octyl itaconate (4-OI, 50 mg/kg), a derivative of itaconate, for 4 weeks. Renal function and morphological changes were investigated. Ultrastructural alterations were determined by transmission electron microscopy.Results: Renal IRG1 levels were reduced in two diabetic models. STZ+HFD-treated Irg1 knockout mice exhibited aggravated renal tubular injury and worsened renal function. Treatment with 4-OI lowered urinary albumin-to-creatinine ratio and blood urea nitrogen levels, and restored renal histological changes in db/db mice. It improved mitochondrial damage, increased expressions of peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the renal cortex of db/db mice. These were confirmed in vitro; 4-OI improved high glucose-induced abnormal mitochondrial morphology and TFAM expression in HK-2 cells, effects that were inhibited by PGC-1α silencing. Moreover, 4-OI reduced the number of apoptotic cells in the renal cortex of db/db mice. Further study showed that 4-OI increased renal Nrf2 expression and decreased oxidative stress levels in db/db mice. In HK-2 cells, 4-OI decreased high glucose-induced mitochondrial ROS production, which was reversed by Nrf2 silencing. Nrf2 depletion also inhibited 4-OI-mediated regulation of PGC-1α, TFAM, and mitochondrial apoptotic protein expressions.Conclusions: 4-OI attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Succinatos , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Succinatos/farmacologia , Succinatos/uso terapêutico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Masculino , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos
15.
EBioMedicine ; 107: 105294, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178744

RESUMO

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.


Assuntos
Injúria Renal Aguda , Células Epiteliais , Túbulos Renais , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Humanos , Células Epiteliais/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Animais , Biomarcadores , Fibrose , Regeneração
16.
Redox Rep ; 29(1): 2391139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39138590

RESUMO

Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development. The sigma-1 receptor (S1R), a specific protein found in MAMs, is involved in various physiological processes, but its role in oxalate-induced kidney stone formation remains unclear. In this study, we established cellular and rat models of oxalate-induced kidney stone formation to elucidate the S1R's effects against ERS and apoptosis and its mechanism in oxalate-induced RTEC injury. We found that oxalate downregulated S1R expression in RTECs and escalated oxidative stress and ERS, culminating in increased apoptosis. The S1R agonist dimemorfan up-regulated S1R expression and mitigated ERS and oxidative stress, thereby reducing apoptosis. This protective effect was mediated through S1R inhibition of the CHOP pathway. Animal experiments demonstrated that S1R's activation attenuated oxalate-induced kidney injury and alleviated kidney stone formation. This is the first study to establish the connection between S1R and kidney stones, suggesting S1R's protective role in inhibiting ERS-mediated apoptosis to ameliorate kidney stone formation.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Células Epiteliais , Túbulos Renais , Mitocôndrias , Nefrolitíase , Receptores sigma , Receptor Sigma-1 , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Nefrolitíase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores sigma/metabolismo
17.
Nat Commun ; 15(1): 7368, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191768

RESUMO

The kidney tubules constitute two-thirds of the cells of the kidney and account for the majority of the organ's metabolic energy expenditure. Acute tubular injury (ATI) is observed across various types of kidney diseases and may significantly contribute to progression to kidney failure. Non-invasive biomarkers of ATI may allow for early detection and drug development. Using the SomaScan proteomics platform on 434 patients with biopsy-confirmed kidney disease, we here identify plasma biomarkers associated with ATI severity. We employ regional transcriptomics and proteomics, single-cell RNA sequencing, and pathway analysis to explore biomarker protein and gene expression and enriched biological pathways. Additionally, we examine ATI biomarker associations with acute kidney injury (AKI) in the Kidney Precision Medicine Project (KPMP) (n = 44), the Atherosclerosis Risk in Communities (ARIC) study (n = 4610), and the COVID-19 Host Response and Clinical Outcomes (CHROME) study (n = 268). Our findings indicate 156 plasma proteins significantly linked to ATI with osteopontin, macrophage mannose receptor 1, and tenascin C showing the strongest associations. Pathway analysis highlight immune regulation and organelle stress responses in ATI pathogenesis.


Assuntos
Injúria Renal Aguda , Biomarcadores , COVID-19 , Osteopontina , Proteômica , Humanos , Injúria Renal Aguda/sangue , Proteômica/métodos , Masculino , Biomarcadores/sangue , Feminino , Pessoa de Meia-Idade , COVID-19/sangue , Osteopontina/sangue , Tenascina/sangue , Tenascina/genética , Tenascina/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Idoso , Adulto , SARS-CoV-2 , Análise de Célula Única , Proteínas Sanguíneas/metabolismo
18.
Sci Rep ; 14(1): 19443, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169052

RESUMO

Cisplatin-induced nephrotoxicity restricts its clinical use against solid tumors. The present study elucidated the pharmacological effects of Renogrit, a plant-derived prescription medicine, using cisplatin-induced human renal proximal tubular (HK-2) cells and Caenorhabditis elegans. Quantification of phytochemicals in Renogrit was performed on HPTLC and UHPLC platforms. Renogrit was assessed in vitro in HK-2 cells post-exposure to clinically relevant concentration of cisplatin. It was observed that renoprotective properties of Renogrit against cisplatin-induced injury stem from its ability to regulate renal injury markers (KIM-1, NAG levels; NGAL mRNA expression), redox imbalance (ROS generation; GST levels), and mitochondrial dysfunction (mitochondrial membrane potential; SKN-1, HSP-60 expression). Renogrit was also found to modulate apoptosis (EGL-1 mRNA expression; protein levels of p-ERK, p-JNK, p-p38, c-PARP1), necroptosis (intracellular calcium accumulation; RIPK1, RIPK3, MLKL mRNA expression), mitophagy (lysosome population; mRNA expression of PINK1, PDR1; protein levels of p-PINK1, LC3B), and inflammation (IL-1ß activity; protein levels of LXR-α). More importantly, Renogrit treatment did not hamper normal anti-proliferative effects of cisplatin as observed from cytotoxicity analysis on MCF-7, A549, SiHa, and T24 human cancer cells. Taken together, Renogrit could be a potential clinical candidate to mitigate cisplatin-induced nephrotoxicity without compromising the anti-neoplastic properties of cisplatin.


Assuntos
Apoptose , Caenorhabditis elegans , Cisplatino , Mitofagia , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Animais , Humanos , Mitofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Extratos Vegetais/farmacologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Antineoplásicos/efeitos adversos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia
19.
Ren Fail ; 46(2): 2393262, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39192578

RESUMO

Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.


Assuntos
Injúria Renal Aguda , DNA Mitocondrial , Mitocôndrias , Mitofagia , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Mitocôndrias/metabolismo , Túbulos Renais/patologia , Dinâmica Mitocondrial , Estresse Oxidativo , Células Epiteliais/metabolismo , Animais , Antioxidantes/uso terapêutico
20.
Int Immunopharmacol ; 141: 112794, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137626

RESUMO

In China, the Astragalus membranaceus root is used to treat chronic kidney disease. Astragaloside IV (AS-IV), the primary bioactive compound, exhibits anti-inflammatory and antioxidative properties; however, its renoprotective mechanism in diabetic kidney disease (DKD) remains unclear. The study aimed to investigate the protective effects of AS-IV on DKD revealing the underlying mechanisms. We established an early diabetic rat model by feeding a high-fat diet and administering low-dose streptozotocin. Twelve weeks post-treatment, renal function was evaluated using functional assays, histological analyses, immunohistochemistry, western blotting, and transmission electron microscopy. HK-2 cells exposed to high glucose conditions were used to examine the effect of AS-IV on oxidative stress, iron levels, reactive oxygen species (ROS), and lipid peroxidation. Network pharmacology, proteomics, molecular docking, and molecular dynamics simulation techniques were employed to elucidate the role of AS-IV in DKD. The results revealed that AS-IV effectively enhanced renal function and mitigated disease pathology, oxidative stress, and ferroptosis markers in DKD rats. In HK-2 cells, AS-IV lowered the levels of lipid peroxides, Fe2+, and glutathione, indicating the repair of ferroptosis-related mitochondrial damage. AS-IV reduced mitochondrial ROS while enhancing mitochondrial membrane potential and ATP production, indicating its role in combating mitochondrial dysfunction. Overall, in silico analyses revealed that AS-IV interacts with HMOX1, FTH1, and TFR1 proteins, supporting its efficacy in alleviating renal injury by targeting mitochondrial dysfunction and ferroptosis. AS-IV may play a renoprotective role by regulating mitochondrial dysfunction and inhibiting. HMOX1/FTH1/TFR1-induced ferroptosis. Accordingly, AS-IV could be developed for the clinical treatment of DKD-related renal injury.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Células Epiteliais , Ferroptose , Túbulos Renais , Mitocôndrias , Saponinas , Triterpenos , Animais , Ferroptose/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Linhagem Celular , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA