Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.699
Filtrar
1.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003052

RESUMO

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Assuntos
Acidithiobacillus , Antimônio , Sulfatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efeitos dos fármacos , Sulfatos/metabolismo , Compostos Férricos , Oxirredução , Mineração , Ferro/metabolismo
2.
Environ Microbiol ; 26(10): e16683, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350431

RESUMO

Sulphate-reducing microorganisms, or SRMs, are crucial to organic decomposition, the sulphur cycle, and the formation of pyrite. Despite their low energy-yielding metabolism and intense competition with other microorganisms, their ability to thrive in natural habitats often lacking sufficient substrates remains an enigma. This study delves into how Desulfovibrio desulfuricans G20, a representative SRM, utilizes photoelectrons from extracellular sphalerite (ZnS), a semiconducting mineral that often coexists with SRMs, for its metabolism and energy production. Batch experiments with sphalerite reveal that the initial rate and extent of sulphate reduction by G20 increased by 3.6 and 3.2 times respectively under light conditions compared to darkness, when lactate was not added. Analyses of microbial photoelectrochemical, transcriptomic, and metabolomic data suggest that in the absence of lactate, G20 extracts photoelectrons from extracellular sphalerite through cytochromes, nanowires, and electron shuttles. Genes encoding movement and biofilm formation are upregulated, suggesting that G20 might sense redox potential gradients and migrate towards sphalerite to acquire photoelectrons. This process enhances the intracellular electron transfer activity, sulphur metabolism, and ATP production of G20, which becomes dominant under conditions of carbon starvation and extends cell viability in such environments. This mechanism could be a vital strategy for SRMs to survive in energy-limited environments and contribute to sulphur cycling.


Assuntos
Desulfovibrio desulfuricans , Oxirredução , Sulfatos , Sulfetos , Sulfatos/metabolismo , Sulfetos/metabolismo , Desulfovibrio desulfuricans/metabolismo , Desulfovibrio desulfuricans/genética , Biofilmes/crescimento & desenvolvimento , Elétrons , Enxofre/metabolismo , Transporte de Elétrons , Compostos de Zinco
3.
J Agric Food Chem ; 72(38): 21112-21121, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39256187

RESUMO

Acetochlor residues can contaminate anoxic habitats where anaerobic microbial transformation dominates. Herein, a highly efficient anaerobic acetochlor-degrading consortium ACT6 was enriched using sulfate and acetochlor as selection pressures. The acclimated consortium ACT6 showed an 8.7-fold increase in its ability to degrade acetochlor compared with the initial consortium ACT1. Two degradation pathways of acetochlor were found: reductive dechlorination and thiol-substitution dechlorination in the chloroacetyl group, in which the latter dominated. Acclimation enhanced the abundances of Desulfovibrio, Proteiniclasticum, and Lacrimispora from 0.7 to 28.0% (40-fold), 4.7 to 18.1% (4-fold), and 2.3 to 12.3% (5-fold), respectively, which were positively correlated with sulfate concentrations and acetochlor degradation ability. Three acetochlor-degrading anaerobes were isolated from the acclimated consortium ACT6, namely Cupidesulfovibrio sp. SRB-5, Proteiniclasticum sp. BAD-10, and Lacrimispora sp. BAD-7. This study provides new insights into the anaerobic catabolism of acetochlor and the anaerobic treatment of acetochlor in wastewater.


Assuntos
Biodegradação Ambiental , Herbicidas , Sulfatos , Toluidinas , Herbicidas/metabolismo , Herbicidas/química , Toluidinas/metabolismo , Toluidinas/química , Anaerobiose , Sulfatos/metabolismo , Sulfatos/química , Consórcios Microbianos , Halogenação , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
4.
Pharmacol Res Perspect ; 12(5): e70021, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39344282

RESUMO

Myricetin (MYR) and ampelopsin (AMP, or dihydromyricetin) are flavonoid aglycones found in certain plants and dietary supplements. During the presystemic biotransformation of flavonoids, mainly sulfate and glucuronide derivatives are produced, which are the dominant metabolites in the circulation. In this study, we tested the interactions of MYR, myricetin-3'-O-sulfate (M3'S), AMP, and ampelopsin-4'-O-sulfate (A4'S) with human serum albumin (HSA), cytochrome P450 enzymes (CYPs), and organic anion-transporting polypeptides (OATPs) using in vitro models, including the recently developed method for measuring flavonoid levels in living cells. M3'S and MYR bound to albumin with high affinity, and they showed moderate displacing effects versus the Site I marker warfarin. MYR, M3'S, AMP, and A4'S exerted no or only minor inhibitory effects on CYP2C9, CYP2C19, and CYP3A4 enzymes. M3'S and MYR caused considerable inhibitory actions on OATP1B1 at low micromolar concentrations (IC50 = 1.7 and 6.4 µM, respectively), while even their nanomolar levels resulted in strong inhibitory effects on OATP2B1 (IC50 = 0.3 and 0.4 µM, respectively). In addition, M3'S proved to be a substrate of OATP1B1 and OATP2B1. These results suggest that MYR-containing dietary supplements may affect the OATP-mediated transport of certain drugs, and OATPs are involved in the tissue uptake of M3'S.


Assuntos
Flavonoides , Transportador 1 de Ânion Orgânico Específico do Fígado , Transportadores de Ânions Orgânicos , Humanos , Flavonoides/farmacologia , Transportadores de Ânions Orgânicos/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Citocromo P-450 CYP3A/metabolismo , Flavonóis/farmacologia , Sulfatos/metabolismo , Albumina Sérica/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
5.
Geobiology ; 22(5): e12617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295594

RESUMO

The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ34S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ34S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (>100 µm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ34S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be 34ε = 55.7‰ and 33λ = 0.5129 from the δ34S and Δ33S' values of medium-sized pyrite grains ranging from 100 to 300 µm and the average δ34S and Δ33S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ34S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be 34ε = 47.5‰. The 34ε value in the middle part of Member 3 was calculated from the average δ34S values of the rim of medium-sized pyrite grains and the average δ34S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ34SCRS values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ34SCRS values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ34SCRS values likely resulted from local redox conditions and not from a global increase in the oceanic sulfate concentration.


Assuntos
Sedimentos Geológicos , Isótopos de Enxofre , Enxofre , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , China , Isótopos de Enxofre/análise , Enxofre/análise , Enxofre/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/análise , Sulfetos/metabolismo , Sulfatos/análise , Sulfatos/metabolismo , Oceanos e Mares , Ferro
6.
Environ Geochem Health ; 46(10): 417, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240407

RESUMO

Soil contamination with heavy metals from industrial and mining activities poses significant environmental and public health risks, necessitating effective remediation strategies. This review examines the utilization of sulfate-reducing bacteria (SRB) for bioremediation of heavy metal-contaminated soils. Specifically, it focuses on SRB metabolic pathways for heavy metal immobilization, interactions with other microorganisms, and integration with complementary remediation techniques such as soil amendments and phytoremediation. We explore the mechanisms of SRB action, their synergistic relationships within soil ecosystems, and the effectiveness of combined remediation approaches. Our findings indicate that SRB can effectively immobilize heavy metals by converting sulfate to sulfide, forming stable metal sulfides, thereby reducing the bioavailability and toxicity of heavy metals. Nevertheless, challenges persist, including the need to optimize environmental conditions for SRB activity, address their sensitivity to acidic conditions and high heavy metal concentrations, and mitigate the risk of secondary pollution from excessive carbon sources. This study underscores the necessity for innovative and sustainable SRB-based bioremediation strategies that integrate multiple techniques to address the complex issue of heavy metal soil contamination. Such advancements are crucial for promoting green mining practices and environmental restoration.


Assuntos
Biodegradação Ambiental , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Sulfatos , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Bactérias/metabolismo , Mineração , Solo/química
7.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273687

RESUMO

The global obesity epidemic, exacerbated by the sedentary lifestyle fostered by the COVID-19 pandemic, presents a growing socioeconomic burden due to decreased physical activity and increased morbidity. Current obesity treatments show promise, but they often come with expensive medications, frequent injections, and potential side effects, with limited success in improving obesity through increased energy expenditure. This study explores the potential of a refined sulfated polysaccharide (SPSL), derived from the brown seaweed Scytosiphon lomentaria (SL), as a safe and effective anti-obesity treatment by promoting energy expenditure. Chemical characterization revealed that SPSL, rich in sulfate and L-fucose content, comprises nine distinct sulfated glycan structures. In vitro analysis demonstrated potent anti-lipogenic properties in adipocytes, mediated by the downregulation of key adipogenic modulators, including 5' adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Inhibiting AMPK attenuated the anti-adipogenic effects of SPSL, confirming its involvement in the mechanism of action. Furthermore, in vivo studies using zebrafish models showed that SPSL increased energy expenditure and reduced lipid accumulation. These findings collectively highlight the therapeutic potential of SPSL as a functional food ingredient for mitigating obesity-related metabolic dysregulation by promoting energy expenditure. Further mechanistic and preclinical investigations are warranted to fully elucidate its mode of action and evaluate its efficacy in obesity management, potentially offering a novel, natural therapeutic avenue for this global health concern.


Assuntos
Adipogenia , Metabolismo Energético , Fucose , Alimento Funcional , Obesidade , Polissacarídeos , Alga Marinha , Peixe-Zebra , Animais , Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/química , Fucose/metabolismo , Adipogenia/efeitos dos fármacos , Camundongos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Humanos , Sulfatos/química , Sulfatos/metabolismo , PPAR gama/metabolismo , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Fármacos Antiobesidade/uso terapêutico , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo
8.
Curr Microbiol ; 81(11): 365, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292287

RESUMO

Benthic habitats are the largest habitats on Earth, being essential for marine ecosystem functioning. Benthic habitats are particularly vulnerable towards pollution and anthropogenetic influence due to general oligotrophic nature. We, therefore, simulated pollution events involving nitrate and sulphate, in combination with organic carbon. We then observed the microbiota composition the following month. Surprisingly, upon nitrate addition, an abrupt response was observed between two and three weeks after the pollution event. We observed a threefold reduction in species richness, with a dominance of the genus Pseudarchobacter within the Campylobacteriota phylum, concurring with a decrease in nitrification potential and an increase in Dissimilatory Nitrate Reduction to Ammonium (DNRA) and a regain in denitrification. Likewise, addition of sulphate contributed to a delayed response with reduction in species richness albeit weaker than for nitrate, leading to a shift towards potential spore-forming Firmicutes. There was also an increase in DNRA, but only for the oxic conditions, concurring with a regain in sulphate reductio and denitrification. For the nitrate addition experiments, the delay in response could potentially be attributed to the genus Pseudarchobacter which rely on sulphides for denitrification, while for the sulphate addition experiments, the delayed response might be explained by the germination of spores. The late increase of DNRA may indicate a shift towards a different metabolic regime for nitrogen. In conclusion, our microcosm experiments revealed delayed abrupt microbiota shifts resembling tipping points that can potentially be overlooked in natural ecosystems.


Assuntos
Bactérias , Microbiota , Nitratos , Água do Mar , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Nitratos/metabolismo , Água do Mar/microbiologia , Sulfatos/metabolismo , Ecossistema
9.
Environ Geochem Health ; 46(10): 408, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215874

RESUMO

The changes and transformation laws of intermediate liquid-phase products during the anaerobic degradation of lignite by sulfate-reducing bacteria in the formation of hydrogen sulfide play an important role in supplementing and improving the existing theories on the genesis of hydrogen sulfide gas in coal mines. In this paper, H2S gas and key intermediate liquid-phase products produced during the anaerobic degradation of lignite by sulfate-reducing bacteria were detected and analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the process of hydrogen sulfide production from lignite degradation by sulfate-reducing bacteria can be roughly divided into four stages: slow production phase, rapid growth phase, steady production phase, and slight decline phase. In this reaction system, the SO42- concentration showed a decreasing trend, the pH value showed an increasing trend, and the ORP value decreased and then slightly increased with time. Ten volatile component types were detected during the experiment: straight-chain alkanes, branched-chain alkanes, alcohols, aldehydes, ketones, olefins, amines, lipids, acids and phenols. The key components in the intermediate liquid phase products were straight chain alkanes, straight chain alkanes, acids, alcohols, phenols and amines. PAHs, alkanes, and phenols are closely related to H2S production, while amides stimulate nitrogen production. The process is divided into three stages: hydrolysis stage, H2S gas production stage, and decay stage. Liquid-phase intermediates play an important role in the formation process of coal mine BSR hydrogen sulfide and the mechanism of coal mine H2S genesis.


Assuntos
Carvão Mineral , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Sulfatos/metabolismo , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Redutoras de Enxofre/metabolismo , Minas de Carvão , Oxirredução , Bactérias/metabolismo
10.
Microbiome ; 12(1): 152, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152482

RESUMO

BACKGROUND: H2S imbalances in the intestinal tract trigger Crohn's disease (CD), a chronic inflammatory gastrointestinal disorder characterized by microbiota dysbiosis and barrier dysfunction. However, a comprehensive understanding of H2S generation in the gut, and the contributions of both microbiota and host to systemic H2S levels in CD, remain to be elucidated. This investigation aimed to enhance comprehension regarding the sulfidogenic potential of both the human host and the gut microbiota. RESULTS: Our analysis of a treatment-naive CD cohorts' fecal metagenomic and biopsy metatranscriptomic data revealed reduced expression of host endogenous H2S generation genes alongside increased abundance of microbial exogenous H2S production genes in correlation with CD. While prior studies focused on microbial H2S production via dissimilatory sulfite reductases, our metagenomic analysis suggests the assimilatory sulfate reduction (ASR) pathway is a more significant contributor in the human gut, given its high prevalence and abundance. Subsequently, we validated our hypothesis experimentally by generating ASR-deficient E. coli mutants ∆cysJ and ∆cysM through the deletion of sulfite reductase and L-cysteine synthase genes. This alteration significantly affected bacterial sulfidogenic capacity, colon epithelial cell viability, and colonic mucin sulfation, ultimately leading to colitis in murine model. Further study revealed that gut microbiota degrade sulfopolysaccharides and assimilate sulfate to produce H2S via the ASR pathway, highlighting the role of sulfopolysaccharides in colitis and cautioning against their use as food additives. CONCLUSIONS: Our study significantly advances understanding of microbial sulfur metabolism in the human gut, elucidating the complex interplay between diet, gut microbiota, and host sulfur metabolism. We highlight the microbial ASR pathway as an overlooked endogenous H2S producer and a potential therapeutic target for managing CD. Video Abstract.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Sulfeto de Hidrogênio , Sulfatos , Doença de Crohn/microbiologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Animais , Camundongos , Sulfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fezes/microbiologia , Disbiose/microbiologia , Colo/microbiologia , Metagenômica , Oxirredução , Modelos Animais de Doenças , Feminino
11.
J Hazard Mater ; 478: 135559, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154470

RESUMO

Chromium (Cr) soil contamination is a critical global environmental concern, with hexavalent chromium (Cr[VI]) being especially perilous due to its high mobility, bioavailability, and phytotoxicity. This poses a significant threat to the cultivation of crops, particularly rice, where the mechanisms of Cr(VI) absorption remain largely unexplored. This study uncovered a competitive interaction between Cr(VI) and essential nutrients-sulfate and phosphate during the uptake process. Notably, deficiencies in sulfate and phosphate were associated with a marked increase in Cr(VI) accumulation in rice, reaching up to 76.5 % and 77.7 %, respectively. Employing q-PCR, this study identified significant up-regulation of the sulfate transporter gene, OsSultr1;2, and the phosphate transporter gene, OsPht1;1, in response to Cr(VI) stress. Genetic knockout studies have confirmed the crucial role of OsSultr1;2 in Cr(VI) uptake, with its deletion leading to a 36.1 % to 69.6 % decrease in Cr uptake by rice roots. Similarly, the knockout of OsPht1;1 resulted in an 18.1 % to 25.7 % decrease in root Cr accumulation. These findings highlight the key role of the sulfate transporter OsSultr1;2 in Cr(VI) uptake, with phosphate transporters also contributing significantly to the process. These insights are valuable for developing rice varieties with reduced Cr(VI) accumulation, ensuring the safety of rice grain production.


Assuntos
Cromo , Oryza , Proteínas de Transporte de Fosfato , Fosfatos , Poluentes do Solo , Sulfatos , Oryza/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Cromo/metabolismo , Cromo/toxicidade , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Sulfatos/metabolismo , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
12.
J Environ Manage ; 368: 122127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128342

RESUMO

Construction and demolition wastes (CDWs) have become a significant environmental concern due to urbanization. CDWs in landfill sites can generate high-pH leachate and various constituents (e.g., acetate and sulfate) following the dissolution of cement material, which may affect subsurface biogeochemical properties. However, the impact of CDW leachate on microbial reactions and community compositions in subsurface environments remains unclear. Therefore, we created columns composed of layers of concrete debris containing-soil (CDS) and underlying CDW-free soil, and fed them artificial groundwater with or without acetate and/or sulfate. In all columns, the initial pH 5.6 of the underlying soil layer rapidly increased to 10.8 (without acetate and sulfate), 10.1 (with sulfate), 10.1 (with acetate), and 8.3 (with acetate and sulfate) within 35 days. Alkaliphilic or alkaline-resistant microbes including Hydrogenophaga, Silanimonas, Algoriphagus, and/or Dethiobacter were dominant throughout the incubation in all columns, and their relative abundance was highest in the column without acetate and sulfate (50.7-86.6%). Fe(III) and sulfate reduction did not occur in the underlying soil layer without acetate. However, in the column with acetate alone, pH was decreased to 9.9 after day 85 and Fe(II) was produced with an increase in the relative abundance of Fe(III)-reducing bacteria up to 9.1%, followed by an increase in the methanogenic archaea Methanosarcina, suggestive of methanogenesis. In the column with both acetate and sulfate, Fe(III) and sulfate reduction occurred along with an increase in both Fe(III)- and sulfate-reducing bacteria (19.1 and 17.7%, respectively), while Methanosarcina appeared later. The results demonstrate that microbial Fe(III)- and sulfate-reduction and acetoclastic methanogenesis can occur even in soils with highly alkaline pH resulting from the dissolution of concrete debris.


Assuntos
Microbiologia do Solo , Solo , Concentração de Íons de Hidrogênio , Solo/química , Instalações de Eliminação de Resíduos , Sulfatos/metabolismo , Anaerobiose , Bactérias/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia
13.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201766

RESUMO

Sulfate transporters (SULTRs) are essential for the transport and absorption of sulfate in plants and serve as critical transport proteins within the sulfur metabolism pathway, significantly influencing plant growth, development, and stress adaptation. A bioinformatics analysis of SULTR genes in soybean was performed, resulting in the identification and classification of twenty-eight putative GmSULTRs into four distinct groups. In this study, the characteristics of the 28 GmSULTR genes, including those involved in collinearity, gene structure, protein motifs, cis-elements, tissue expression patterns, and the response to abiotic stress and plant hormone treatments, were systematically analyzed. This study focused on conducting a preliminary functional analysis of the GmSULTR3;1a gene, wherein a high expression level of GmSULTR3;1a in the roots, stems, and leaves was induced by a sulfur deficiency and GmSULTR3;1a improved the salt tolerance. A further functional characterization revealed that GmSULTR3;1a-overexpressing soybean hairy roots had higher SO42-, GSH, and methionine (Met) contents compared with the wild-type (WT) plant. These results demonstrate that the overexpression of GmSULTR3;1a may promote the sulfur assimilation metabolism and increase the content of sulfur-containing amino acids in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Proteínas de Plantas , Estresse Fisiológico , Transportadores de Sulfato , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Família Multigênica , Filogenia , Enxofre/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Tolerância ao Sal/genética , Sulfatos/metabolismo , Plantas Geneticamente Modificadas/genética , Perfilação da Expressão Gênica
14.
Bioresour Technol ; 409: 131239, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122125

RESUMO

This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission.


Assuntos
Processos Autotróficos , Desnitrificação , Nitrogênio , Sulfatos , Enxofre , Sulfatos/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Oxirredução , Resistência Microbiana a Medicamentos/genética , Bactérias/metabolismo , Bactérias/genética , Genes Bacterianos , Biodegradação Ambiental , Reatores Biológicos
15.
Chemosphere ; 364: 143081, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142397

RESUMO

Aromatic compounds persist as hazardous contaminants in both aquatic and terrestrial environments, needing rapid and effective remediation strategies. This study evaluated toluene and benzene biodegradation under sulfate and nitrate-reducing conditions in column experiments, utilizing aquifer sediments from a contaminated site. Over a period of 36 weeks, four glass columns were operated simultaneously in an alternating flow-batch regime. Each column received either nitrate or sulfate as an electron acceptor while being exposed to different substrate compositions in varied exposure orders. A redox dependent contaminant removal efficiency was observed, with toluene removal efficiency at 81% under sulfate and 55% under nitrate-reducing conditions, and benzene removal efficiency approximately at 44% and 59%, respectively, within 4-6 weeks. The rapid removal under anaerobic conditions was attributed to the alternating flow-batch regime, allowing biomass growth in batch mode, and applying selection pressure to non-specific biodegraders during flow regime. Toluene removal remained unaffected by benzene's presence but exhibited slight inhibition in the presence of an aromatic mixture composed of BTEX, indene, indane, and naphthalene. Benzene removal efficiency dropped to 8% in the presence of toluene but remained unaffected by the mixture. Pre-exposure to a single compound enhanced breakdown efficiency when further faced with a more complex mixture. Additionally, beta-diversity analysis conducted on the four columns revealed distinct microbial community clustering between sulfate and nitrate-reducing conditions, emphasizing the determining role of redox conditions. Findings of this study can be used to develop more effective pollution cleanup strategies, specifically targeting parameters like redox conditions, substrate interactions, and pollution history, thus improving our ability to mitigate contamination across diverse environments.


Assuntos
Benzeno , Biodegradação Ambiental , Oxirredução , Tolueno , Tolueno/metabolismo , Benzeno/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Microbiota , Nitratos/metabolismo , Nitratos/análise , Sulfatos/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Bactérias/metabolismo
16.
Bioresour Technol ; 411: 131308, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39155018

RESUMO

Sulfide produced from dissimilatory sulfate reduction can combine with hydrogen to form hydrogen sulfide, causing odor issues and environmental pollution. To address this problem, ferrihydrite-humic acid coprecipitate was added to improve assimilatory sulfate reduction (ASR), resulting in a decrease in sulfide production (190.2 ± 14.6 mg/L in the Fh-HA group vs. 246.3 ± 8.1 mg/L in the Fh group) with high sulfate removal. Humic acid, adsorbed on the surface of ferrihydrite, delayed secondary mineralization of ferrihydrite under sulfate reduction condition. Therefore, more iron-reducing species (e.g. Trichococcus, Geobacter) were enriched with ferrihydrite-humic acid coprecipitate to transfer more electrons to other species, which led to more COD reduction, an increase in electron transfer capacity, and a decrease in the NADH/NAD+ ratio. Metagenomic analysis also indicated that functional genes related to ASR was enhanced with ferrihydrite-humic acid coprecipitate. Thus, the addition of ferrihydrite-humic acid coprecipitate can be considered as a promising candidate for anaerobic sulfate wastewater treatment.


Assuntos
Compostos Férricos , Substâncias Húmicas , Oxirredução , Sulfatos , Águas Residuárias , Purificação da Água , Sulfatos/metabolismo , Sulfatos/química , Compostos Férricos/química , Águas Residuárias/química , Anaerobiose , Purificação da Água/métodos
17.
Sci Rep ; 14(1): 18093, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103552

RESUMO

12-oxophytodienoate reductase 3 (OPR3) is a key enzyme in the biosynthesis of jasmonoyl-L-isoleucine, the receptor-active form of jasmonic acid and crucial signaling molecule in plant defense. OPR3 was initially crystallized as a self-inhibitory dimer, implying that homodimerization regulates enzymatic activity in response to biotic and abiotic stresses. Since a sulfate ion is bound to Y364, mimicking a phosphorylated tyrosine, it was suggested that dimer formation might be controlled by reversible phosphorylation of Y364 in vivo. To investigate OPR3 homodimerization and its potential physiological role in more detail, we performed analytical gel filtration and dynamic light scattering on wild-type OPR3 and three variants (R283D, R283E, and Y364P). The experiments revealed a rapid and highly sensitive monomer-dimer equilibrium for all OPR3 constructs. We crystallized all constructs with and without sulfate to examine its effect on the dimerization process and whether reversible phosphorylation of Y364 triggers homodimerization in vivo. All OPR3 constructs crystallized in their monomeric and dimeric forms independent of the presence of sulfate. Even variant Y364P, lacking the putative phosphorylation site, was crystallized as a self-inhibitory homodimer, indicating that Y364 is not required for dimerization. Generally, the homodimer is relatively weak, and our results raise doubts about its physiological role in regulating jasmonate biosynthesis.


Assuntos
Multimerização Proteica , Fosforilação , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Oxirredutases/metabolismo , Oxirredutases/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Cristalografia por Raios X , Solanum lycopersicum/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Sulfatos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH
18.
Appl Microbiol Biotechnol ; 108(1): 449, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207532

RESUMO

Bioremediation provides an environmentally sound solution for hydrocarbon removal. Although bioremediation under anoxic conditions is slow, it can be coupled with methanogenesis and is suitable for energy recovery. By altering conditions and supplementing alternative terminal electron acceptors to the system to induce syntrophic partners of the methanogens, this process can be enhanced. In this study, we investigated a hydrocarbon-degrading microbial community derived from chronically contaminated soil. Various hydrocarbon mixtures were used during our experiments in the presence of different electron acceptors. In addition, we performed whole metagenome sequencing to identify the main actors of hydrocarbon biodegradation in the samples. Our results showed that the addition of ferric ions or sulphate increased the methane yield. Furthermore, the addition of CO2, ferric ion or sulphate enhanced the biodegradation of alkanes. A significant increase in biodegradation was observed in the presence of ferric ions or sulphate in the case of all aromatic components, while naphthalene and phenanthrene degradation was also enhanced by CO2. Metagenome analysis revealed that Cellulomonas sp. is the most abundant in the presence of alkanes, while Ruminococcus and Faecalibacterium spp. are prevalent in aromatics-supplemented samples. From the recovery of 25 genomes, it was concluded that the main pathway of hydrocarbon activation was fumarate addition in both Cellulomonas, Ruminococcus and Faecalibacterium. Chloroflexota bacteria can utilise the central metabolites of aromatics biodegradation via ATP-independent benzoyl-CoA reduction. KEY POINTS: • Methanogenesis and hydrocarbon biodegradation were enhanced by Fe3+ or SO42- • Cellulomonas, Ruminococcus and Faecalibacterium can be candidates for the main hydrocarbon degraders • Chloroflexota bacteria can utilise the central metabolites of aromatics degradation.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos , Metano , Microbiologia do Solo , Sulfatos , Sulfatos/metabolismo , Metano/metabolismo , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Compostos Férricos/metabolismo , Metagenoma , Poluentes do Solo/metabolismo
19.
Chemosphere ; 363: 142869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019186

RESUMO

Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO3) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas.


Assuntos
Cádmio , Carbonatos , Desnitrificação , Sulfetos , Cádmio/metabolismo , Sulfetos/metabolismo , Carbonatos/química , Carbonatos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Biodegradação Ambiental , Biofilmes , Poluentes Atmosféricos/metabolismo , Consórcios Microbianos , Sulfatos/metabolismo , Compostos de Cádmio
20.
Environ Sci Technol ; 58(32): 14225-14236, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39083336

RESUMO

The mechanism governing sulfur cycling in nitrate reduction within sulfate-rich reservoirs during seasonal hypoxic conditions remains poorly understood. This study employs nitrogen and oxygen isotope fractionation in nitrate, along with metagenomic sequencing to elucidate the intricacies of the coupled sulfur oxidation and nitrate reduction process in the water column. In the Aha reservoir, a typical seasonally stratified water body, we observed the coexistence of denitrification, bacterial sulfide oxidation, and bacterial sulfate reduction in hypoxic conditions. This is substantiated by the presence of abundant N/S-related genes (nosZ and aprAB/dsrAB) and fluctuations in N/S species. The lower 15εNO3/18εNO3 ratio (0.60) observed in this study, compared to heterotrophic denitrification, strongly supports the occurrence of sulfur-driven denitrification. Furthermore, we found a robust positive correlation between the metabolic potential of bacterial sulfide oxidation and denitrification (p < 0.05), emphasizing the role of sulfide produced via sulfate reduction in enhancing denitrification. Sulfide-driven denitrification relied on ∑S2- as the primary electron donor preferentially oxidized by denitrification. The pivotal genus, Sulfuritalea, emerged as a central player in both denitrification and sulfide oxidation processes in hypoxic water bodies. Our study provides compelling evidence that sulfides assume a critical role in regulating denitrification in hypoxic water within an ecosystem where their contribution to the overall nitrogen cycle was previously underestimated.


Assuntos
Desnitrificação , Metagenômica , Sulfatos , Sulfetos , Sulfatos/metabolismo , Sulfetos/metabolismo , Nitratos/metabolismo , Processos Autotróficos , Oxirredução , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA