Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 22(4): 887-901, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27515227

RESUMO

The objective of this work was to obtain Spirulina (Arthrospira maxima) nanoparticles (SNPs) by using high-impact mechanical milling and to characterize them by electron microscopy and spectroscopy techniques. The milling products were analyzed after various processing times (1-4 h), and particle size distribution and number mean size (NMS) were determined by analysis of high-resolution scanning electron microscopic images. The smallest particles are synthesized after 3 h of milling, had an NMS of 55.6±3.6 nm, with 95% of the particles being smaller than 100 nm. High-resolution transmission electron microscopy showed lattice spacing of ~0.27±0.015 nm for SNPs. The corresponding chemical composition was obtained by energy-dispersive X-ray spectroscopy, and showed the presence of Ca, Fe, K, Mg, Na, and Zn. The powder flow properties showed that the powder density was higher when the average nanoparticle size is smaller. They showed free flowability and an increase in their specific surface area (6.89±0.23 m2/g) up to 12-14 times larger than the original material (0.45±0.02 m2/g). Fourier transform infrared spectroscopy suggested that chemical damage related to the milling is not significant.


Assuntos
Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Spirulina/ultraestrutura , Nanopartículas/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Spirulina/química
2.
World J Microbiol Biotechnol ; 31(7): 1157-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953254

RESUMO

Arthrospira (Spirulina) is a microalgae that has a unique set of biological characteristics which are very useful for a broad range of applications. Based on its worldwide requirements, this investigation was conducted to collect, isolate and identify the local Arthrospira strains in the central and western part of Mexico. We have successfully collected, isolated and identified (morphologically as well as molecularly) three Arthrospira strains from different regions in Mexico. Morphological studies were conducted by analyzing the size and shape of the helix, the spiral pattern, cell length and width with the help of light microscopy and for molecular analysis, the 16S rRNA and internally transcribed spacer (ITS, 16S-23 rRNA) gene partial sequence were used followed by phylogenetic analysis. The three species were completely different in their filament size and width whereas their ITS sequences were the same in size and more than 87 % similar in nucleotide sequence. The resulted morphological and phylogenetic analysis concluded that the three stains were identified as Arthrospira platensis. Inspite of their morphological variations and differences they were grouped genetically into one cluster along with the A. platensis of reported strains of Gene Bank database (NCBI). One of the isolated strains NPS-0, is probably the biggest Arthrospira strains ever reported and can be suitable for industrial scale biomass and protein production.


Assuntos
Spirulina/classificação , Spirulina/isolamento & purificação , DNA Bacteriano/análise , DNA Ribossômico/análise , Variação Genética , México , Filogenia , RNA Ribossômico 16S/análise , Análise de Sequência de DNA , Spirulina/genética , Spirulina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA