Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microb Pathog ; 99: 178-190, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27565088

RESUMO

Quorum sensing is a cell-to-cell communication mechanism leading to differential gene expression in response to high population density. The autoinducer-1 (AI-1) type quorum sensing system is incomplete in Escherichia coli and Salmonella due to the lack of the AI-1 synthase (LuxI homolog) responsible for acyl homoserine lactone (AHL) synthesis. However, these bacteria encode the AHL receptor SdiA (a LuxR homolog) leading to gene regulation in response to AI-1 produced by other bacteria. This study aimed to model the SdiA protein of Salmonella enterica serovar Enteritidis PT4 578 based on three crystallized SdiA structures from Enterohemorrhagic E. coli (EHEC) with different ligands. Molecular docking of these predicted structures with AHLs, furanones and 1-octanoyl-rac-glycerol were also performed. The available EHEC SdiA structures provided good prototypes for modeling SdiA from Salmonella. The molecular docking of these proteins showed that residues Y63, W67, Y71, D80 and S134 are common binding sites for different quorum modulating signals, besides being conserved among other LuxR type proteins. We also show that AHLs with twelve carbons presented better binding affinity to SdiA than AHLs with smaller side chains in our docking analysis, regardless of the protein structures used. Interestingly, the conformational changes provided by AHL binding resulted in structural models with increased affinities to brominated furanones. These results suggest that the use of brominated furanones to inhibit phenotypes controlled by quorum sensing in Salmonella and EHEC may present a good strategy since these inhibitors seem to specifically compete with AHLs for binding to SdiA in both pathogens.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Salmonella enteritidis/enzimologia , Transativadores/química , Transativadores/metabolismo , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Sítios de Ligação , Furanos/química , Furanos/metabolismo , Glicerídeos/química , Glicerídeos/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Octanóis/química , Octanóis/metabolismo , Ligação Proteica , Conformação Proteica
4.
J Clin Microbiol ; 1(1): 106-7, 1975 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1100646

RESUMO

This is the first report of a naturally occurring Salmonella that is urea positive. The strain was identified as Salmonella cubana and it was typical in all biochemical, serological, and bacteriophage reactions, except that is produced urease strongly.


Assuntos
Salmonella enteritidis/enzimologia , Urease/biossíntese , Idoso , Humanos , Masculino , Salmonella enteritidis/classificação , Salmonella enteritidis/isolamento & purificação , Urina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA