Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
Food Chem ; 462: 141017, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216379

RESUMO

The Atlantic salmon is an extremely popular fish for its nutritional value and unique taste among several fish species. Researchers are focusing on the utilization of Atlantic salmon waste for generating protein hydrolysates rich in peptides and amino acids and investigating their health benefits. Several technological approaches, including enzymatic, chemical, and the recently developed subcritical water hydrolysis, are currently used for the production of Atlantic salmon waste protein hydrolysates. Hydrolyzing various wastes, e.g., heads, bones, skin, viscera, and trimmings, possessing antioxidant, blood pressure regulatory, antidiabetic, and anti-inflammatory properties, resulting in applications in human foods and nutraceuticals, animal farming, pharmaceuticals, cell culture, and cosmetics industries. Furthermore, future applications, constraints several challenges associated with industrial hydrolysate production, including sensory, safety, and economic constraints, which could be overcome by suggested techno processing measures. Further studies are recommended for developing large-scale, commercially viable production methods, focusing on eradicating sensory constraints and facilitating large-scale application.


Assuntos
Proteínas de Peixes , Hidrolisados de Proteína , Salmo salar , Animais , Salmo salar/metabolismo , Hidrolisados de Proteína/química , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Humanos , Hidrólise , Resíduos/análise
2.
Epigenetics ; 19(1): 2392049, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39151124

RESUMO

The canonical view of DNA methylation, a pivotal epigenetic regulation mechanism in eukaryotes, dictates its role as a suppressor of gene activity, particularly within promoter regions. However, this view is being challenged as it is becoming increasingly evident that the connection between DNA methylation and gene expression varies depending on the genomic location and is therefore more complex than initially thought. We examined DNA methylation levels in the gut epithelium of Atlantic salmon (Salmo salar) using whole-genome bisulfite sequencing, which we correlated with gene expression data from RNA sequencing of the same gut tissue sample (RNA-seq). Assuming epigenetic signals might be pronounced between distinctive phenotypes, we compared large and small fish, finding 22 significant associations between 22 differentially methylated regions and 21 genes. We did not detect significant methylation differences between large and small fish. However, we observed a consistent signal of methylation levels around the transcription start sites (TSS), being negatively correlated with the expression levels of those genes. We found both negative and positive associations of methylation levels with gene expression further upstream or downstream of the TSS, revealing a more unpredictable pattern. The 21 genes showing significant methylation-expression correlations were involved in biological processes related to salmon health, such as growth and immune responses. Deciphering how DNA methylation affects the expression of such genes holds great potential for future applications. For instance, our results suggest the importance of genomic context in targeting epigenetic modifications to improve the welfare of aquaculture species like Atlantic salmon.


Assuntos
Metilação de DNA , Epigênese Genética , Salmo salar , Animais , Salmo salar/genética , Salmo salar/metabolismo , Mucosa Intestinal/metabolismo , Sítio de Iniciação de Transcrição
3.
Food Chem ; 460(Pt 3): 140770, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121777

RESUMO

Lipid oxidation in air-fried seafood poses a risk to human health. However, the effect of a prooxidant environment on lipid oxidation in seafood at different air frying (AF) temperatures remains unknown. An integrated machine learning (ML) - guided REIMS and lipidomics method was applied to explore lipid profiles, lipid oxidation, and lipid metabolic pathways of salmons under different AF temperatures (140, 160, 180, and 200 °C). A significant difference in the lipidomic fingerprinting of air-dried salmon at different temperatures was shown by the main ML methods (neural networks, support vector machines, ensemble learning, and naïve bayes). In total, 773 differential expression metabolites (DEMs) were identified, including glycerophospholipids (GPs), glycerides (GLs), and sphingolipids. A total of 34 DEMs with p values <0.05 and variable importance of projection values >1.0 were analyzed, belonging to linoleic acid metabolism, GL metabolism, and GP metabolism pathways. Correlation network analysis revealed that some characteristic DEMs (phosphatidylcholine, lyso-phosphatidylcholine, triglycerides, fatty acids, and phosphatidylethanolamine) were highly correlated with lipid oxidation. In addition, variations of volatile compounds, color values, texture characteristics, and thiobarbituric acid-reactive substance values were analyzed to corroborate the oxidation characteristics.


Assuntos
Culinária , Lipidômica , Aprendizado de Máquina , Salmo salar , Alimentos Marinhos , Animais , Salmo salar/metabolismo , Alimentos Marinhos/análise , Lipídeos/química , Temperatura Alta , Oxirredução , Metabolismo dos Lipídeos , Espectrometria de Massas
4.
Sci Rep ; 14(1): 18006, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097615

RESUMO

Choline is recognized as an essential nutrient for Atlantic salmon at all developmental stages. However, its dietary requirement is not well defined. Choline plays a critical role in lipid transport, and the clearest deficiency sign is intestinal steatosis. The present work, aiming to find whether lipid source and fish size may affect steatosis symptoms, was one of a series of studies conducted to identify which production-related conditions may influence choline requirement. Six choline-deficient diets were formulated varying in ratios of rapeseed oil to fish oil and fed to Atlantic salmon of 1.5 and 4.5 kg. After eight weeks, somatic characteristics were observed, and the severity of intestinal steatosis was assessed by histological, biochemical, and molecular analyses. Fatty acid composition in pyloric intestine, mesenteric tissue, and liver samples was also quantified. The increasing rapeseed oil level increased lipid digestibility markedly, enhancing lipid supply to the fish. Moreover, small fish consumed more feed, and consequently had a higher lipid intake. In conclusion, the results showed that choline requirement depends on dietary lipid load, which depends on the fatty acid profile as well as the fish size.


Assuntos
Ração Animal , Óleos de Peixe , Óleo de Brassica napus , Salmo salar , Animais , Óleo de Brassica napus/administração & dosagem , Salmo salar/metabolismo , Salmo salar/crescimento & desenvolvimento , Óleos de Peixe/administração & dosagem , Ração Animal/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Doenças dos Peixes/patologia , Doenças dos Peixes/metabolismo , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Colina/metabolismo , Colina/administração & dosagem , Dieta/veterinária , Fígado/metabolismo , Fígado/patologia
5.
J Environ Manage ; 367: 122073, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098079

RESUMO

Side streams from aquaculture production such as fish sludge poses ample opportunities for biological upcycling, as the sludge contains high amounts of nutrients, energy and valuable biochemicals, making it an ideal food for extractive species. Sludge has been proposed as a feed stock for polychaete production, which in turn can be utilized live in shrimp aquaculture or as an aquafeed ingredient. However, the biosafety of such value chains has not yet been addressed. We conducted an experiment exposing the polychaete Hediste diversicolor to aquaculture sludge spiked with four different fish pathogens (Mycobacterium salmoniphilum, Yersinia ruckeri, Infectious Pancreatic Necrosis (IPN) and Infectious Salmon Anaemia (ISA)) known to cause diseases in Atlantic salmon (Salmo salar L.). Moreover, we assessed whether heavy metals and other potentially hazardous elements present in fish sludge bioaccumulates in the polychaetes. Neither of the bacteria nor viruses could be detected in the polychaetes after 14 days of continuous exposure. Seven of the 15 elements we analysed showed bioaccumulation factors significantly below one, meaning biodilution, while the other eight did not differ from one, meaning no bioaccumulation. None of the elements showed a significant bioaccumulation. Further on, none of the heavy metals found in the polychaetes at the end of our experiment exceeded the EU regulatory maximum levels for fish feed ingredients. The current results suggest that a H. diversicolor can reared on aquaculture sludge, and aquaculture sludge may serve as feed stock for polychaete production without the product exceeding EU regulations for contaminants in animal feed.


Assuntos
Aquicultura , Poliquetos , Esgotos , Animais , Poliquetos/metabolismo , Bioacumulação , Metais Pesados/metabolismo , Metais Pesados/análise , Salmo salar/metabolismo , Salmão/metabolismo
6.
FASEB J ; 38(14): e23837, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031536

RESUMO

Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17ß plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.


Assuntos
Proteína Morfogenética Óssea 15 , Ovulação , Salmo salar , Animais , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Feminino , Salmo salar/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Ovário/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Masculino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Estações do Ano
7.
Sci Rep ; 14(1): 15240, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956386

RESUMO

Major vault protein (MVP) is the main component of the vault complex, which is a highly conserved ribonucleoprotein complex found in most eukaryotic organisms. MVP or vaults have previously been found to be overexpressed in multidrug-resistant cancer cells and implicated in various cellular processes such as cell signaling and innate immunity. The precise function of MVP is, however, poorly understood and its expression and probable function in lower eukaryotes are not well characterized. In this study, we report that the Atlantic salmon louse expresses three full-length MVP paralogues (LsMVP1-3). Furthermore, we extended our search and identified MVP orthologues in several other ecdysozoan species. LsMVPs were shown to be expressed in various tissues at both transcript and protein levels. In addition, evidence for LsMVP to assemble into vaults was demonstrated by performing differential centrifugation. LsMVP was found to be highly expressed in cement, an extracellular material produced by a pair of cement glands in the adult female salmon louse. Cement is important for the formation of egg strings that serve as protective coats for developing embryos. Our results imply a possible novel function of LsMVP as a secretory cement protein. LsMVP may play a role in structural or reproductive functions, although this has to be further investigated.


Assuntos
Copépodes , Partículas de Ribonucleoproteínas em Forma de Abóbada , Animais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Copépodes/metabolismo , Salmo salar/parasitologia , Salmo salar/metabolismo , Feminino , Filogenia , Sequência de Aminoácidos
8.
Environ Pollut ; 357: 124421, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38914195

RESUMO

Microplastics (MPs) are carriers of persistent organic pollutants (POPs). The influence of MPs on the toxicokinetics of POPs was investigated in a feeding experiment on Atlantic salmon (Salmo salar), in which fish were fed similar contaminant concentrations in feed with contaminants sorbed to MPs (Cont. MPs); feed with virgin MPs and contaminated feed (1:1), and feed with contaminants without MPs (Cont.). The results showed that the salmon fillets accumulated more POPs when fed with a diet where contaminants were sorbed to the MPs, despite the 125-250 µm size MPs themselves passing the intestines without absorption. Furthermore, depuration was significantly slower for several contaminants in fish fed the diet with POPs sorbed to the MPs. Modelled elimination coefficients and assimilation efficiencies of lipophilic chlorinated and brominated contaminants correlated with contaminant hydrophobicity (log Kow) within the diets and halogen classes. The more lipophilic the contaminant was, the higher was the transfer from feed to salmon fillet. The assimilation efficiency for the diet without MPs was 50-71% compared to 54-89% for the contaminated MPs diet. In addition, MPs caused a greater proportional uptake of higher molecular weight brominated congeners. In the present study, higher assimilation efficiencies and a significantly higher slope of assimilation efficiencies vs log Kow were found for the Cont. MPs diet (p = 0.029), indicating a proportionally higher uptake of higher-brominated congeners compared to the Cont. diet. Multiple variance analyses of elimination coefficients and assimilation efficiencies showed highly significant differences between the three diets for the chlorinated (p = 2E-06; 6E-04) and brominated (p = 5E-04; 4E-03) congeners and within their congeners. The perfluorinated POPs showed low assimilation efficiencies of <12%, which can be explained by faster eliminations corresponding to half-lives of 11-39 days, as well as a lower proportional distribution to the fillet, compared to e.g. the liver.


Assuntos
Ração Animal , Microplásticos , Salmo salar , Toxicocinética , Poluentes Químicos da Água , Animais , Salmo salar/metabolismo , Poluentes Químicos da Água/metabolismo , Microplásticos/metabolismo , Ração Animal/análise
9.
Food Chem ; 456: 139414, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38901077

RESUMO

Atlantic salmon were fed either a diet reflecting current commercial feeds with added oil supplied by a blend of fish oil and rapeseed oil (COM), or a diet formulated with oil from transgenic Camelina sativa containing 20% EPA + DHA (TCO). Salmon were grown from smolt to market size (>3 kg) in sea pens under semi-commercial conditions. There were no differences in growth, feed efficiency or survival between fish fed the TCO or COM diets at the end of the trial. Levels of EPA + DHA in flesh of salmon fed TCO were significantly higher than in fish fed COM. A 140 g fillet from TCO-fed salmon delivered 2.3 g of EPA + DHA, 67% of the weekly requirement level recommended by many health agencies, and 1.5-fold more than the 1.5 g of EPA + DHA for COM-fed fish. Oil from transgenic Camelina supported growth and improved the nutritional quality of farmed salmon in terms of increased "omega-3" supply for human consumers.


Assuntos
Ração Animal , Brassicaceae , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Óleos de Plantas , Plantas Geneticamente Modificadas , Salmo salar , Animais , Salmo salar/metabolismo , Salmo salar/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ração Animal/análise , Ácido Eicosapentaenoico/análise , Ácido Eicosapentaenoico/metabolismo , Brassicaceae/química , Brassicaceae/metabolismo , Brassicaceae/crescimento & desenvolvimento , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Óleos de Peixe/metabolismo , Água do Mar/química , Aquicultura
10.
J Steroid Biochem Mol Biol ; 242: 106542, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38735340

RESUMO

The sustainability of commercial aquaculture production depends critically on prioritizing fish welfare management. Besides monitoring welfare parameters such as fish behaviour and water quality, fish stress level can also provide a reliable measure of the welfare status of farmed fish. Cortisol and 5 of its metabolites (5ß-THF, cortisone, 5ß-DHE, 5ß-THE, ß-cortolone) were previously identified by the authors as suitable stress biomarkers of farmed Atlantic salmon. Based on this knowledge, the present study aimed to investigate the time-related dynamics of these metabolites in plasma, skin mucus, bile and faeces over a 72 h- period. The objective was to determine the optimal sampling time for each matrix and to understand the clearance pathway of these metabolites following stress. An experiment was carried out using a total of 90 Atlantic salmon with an average weight of 438 (±132) g. The average sea temperature was 6.9 °C during the experimental period. A control group of 10 fish was first collected before the remaining 80 fish were submitted to a stress of netting and subsequent relocation into two separate cages. From each of these two stress groups, 10 fish were sampled at 1 h, 2 h, 4 h, 6 h and 12 h, 24 h, 48 h, 72 h after the stress event respectively. The concentrations of cortisol and its metabolites were measured at each of the sampling timepoint. The results demonstrated that plasma cortisol metabolites reached the highest concentration 4 h after stress and remained elevated despite the slight decrease for the remaining timepoints. The peak level was observed at 12 h post-stress in skin mucus and 24 h in bile and faeces. The findings suggest that these timepoints are the optimal for sampling Atlantic salmon post-smolt following stressful events in acute stress studies. Furthermore, the results reveal that analysing cortisol and its metabolites, both in free and conjugated forms, rather than free cortisol provides greater flexibility as their concentrations are less affected by sampling procedure. This study confirms the appropriateness of skin mucus and faeces as less-invasive sample matrices for fish stress evaluation and provides a basis for further developing low invasive tools for monitoring the welfare of farmed salmonid.


Assuntos
Hidrocortisona , Salmo salar , Estresse Fisiológico , Animais , Salmo salar/metabolismo , Hidrocortisona/sangue , Aquicultura/métodos , Fezes/química , Bile/metabolismo , Bile/química , Muco/metabolismo , Muco/química , Biomarcadores/sangue , Pele/metabolismo , Pele/química , Fatores de Tempo , Bem-Estar do Animal , Pesqueiros , Cortisona/sangue , Cortisona/metabolismo
11.
PLoS One ; 19(4): e0302388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648207

RESUMO

The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.


Assuntos
Fígado , Salmo salar , Animais , Fígado/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Fotoperíodo , Metilação de DNA , Genoma , Transcriptoma , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Água do Mar , Metabolismo dos Lipídeos/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
12.
Fish Shellfish Immunol ; 148: 109523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522495

RESUMO

Melanin and the process of melanin synthesis or melanogenesis have central roles in the immune system of insects, and production of melanin-synthesizing enzymes from their haemocytes may be induced following activation through danger signals. Melanin-containing macrophage-like cells have been extensively studied in amphibians and they are also present in reptiles. In fish, melano-macrophages are especially recognized with respect to melano-macrophage centres (MMCs), hypothesized to be analogues of germinal centres in secondary lymphoid organs of mammals and some birds. Melano-macrophages are in addition present in several inflammatory conditions, in particular melanised focal changes, or black spots, in the musculature of farmed Atlantic salmon, Salmo salar. Melanins are complex compounds that may be divided into different forms which all have the ability to absorb and scatter light. Other functions include the quenching of free radicals and a direct effect on the immune system. According to the common view held in the pigment cell community, vertebrate melanin synthesis with melanosome formation may only occur in cells of ectodermal origin. However, abundant information suggests that also myeloid cells of ectothermic vertebrates may be classified as melanocytes. Here, we discuss these opposing views and review relevant literature. Finally, we review the current status on the research concerning melanised focal muscle changes that represent the most severe quality problem in Norwegian salmon production, but also other diseases where melano-macrophages play important roles.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Melaninas , Peixes/metabolismo , Macrófagos/metabolismo , Leucócitos/metabolismo , Melanogênese , Salmo salar/metabolismo , Mamíferos/metabolismo
13.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38298132

RESUMO

Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.


Assuntos
Receptores do FSH , Salmo salar , Masculino , Animais , Camundongos , Receptores do FSH/genética , Receptores do FSH/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Peixe-Zebra/genética , Maturidade Sexual/genética , Hormônio Foliculoestimulante/metabolismo , Testículo/metabolismo
14.
Fish Shellfish Immunol ; 146: 109373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272332

RESUMO

Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.


Assuntos
Proteína HMGB1 , Salmo salar , Animais , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Flagelina/farmacologia
15.
FEBS Open Bio ; 14(1): 23-36, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581908

RESUMO

Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against ß-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.


Assuntos
Quitinases , Salmo salar , Animais , Salmo salar/genética , Salmo salar/metabolismo , Quitinases/genética , Quitinases/química , Quitinases/metabolismo , Mucosa Gástrica/metabolismo , Estômago , Quitina/metabolismo
16.
J Fish Biol ; 104(3): 807-824, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37823583

RESUMO

Thiamin is an essential water-soluble B vitamin known for its wide range of metabolic functions and antioxidant properties. Over the past decades, reproductive failures induced by thiamin deficiency have been observed in several salmonid species worldwide, but it is unclear why this micronutrient deficiency arises. Few studies have compared thiamin concentrations in systems of salmonid populations with or without documented thiamin deficiency. Moreover, it is not well known whether and how thiamin concentration changes during the marine feeding phase and the spawning migration. Therefore, samples of Atlantic salmon (Salmo salar) were collected when actively feeding in the open Baltic Sea, after the sea migration to natal rivers, after river migration, and during the spawning period. To compare populations of Baltic salmon with systems without documented thiamin deficiency, a population of landlocked salmon located in Lake Vänern (Sweden) was sampled as well as salmon from Norwegian rivers draining into the North Atlantic Ocean. Results showed the highest mean thiamin concentrations in Lake Vänern salmon, followed by North Atlantic, and the lowest in Baltic populations. Therefore, salmon in the Baltic Sea seem to be consistently more constrained by thiamin than those in other systems. Condition factor and body length had little to no effect on thiamin concentrations in all systems, suggesting that there is no relation between the body condition of salmon and thiamin deficiency. In our large spatiotemporal comparison of salmon populations, thiamin concentrations declined toward spawning in all studied systems, suggesting that the reduction in thiamin concentration arises as a natural consequence of starvation rather than to be related to thiamin deficiency in the system. These results suggest that factors affecting accumulation during the marine feeding phase are key for understanding the thiamin deficiency in salmonids.


Assuntos
Salmo salar , Tiamina , Animais , Tiamina/metabolismo , Salmo salar/metabolismo , Estágios do Ciclo de Vida , Oceanos e Mares , Oceano Atlântico , Rios
17.
Fish Shellfish Immunol ; 144: 109219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952850

RESUMO

Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1ß, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.


Assuntos
Proteína HMGB1 , Salmo salar , Animais , Humanos , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Flagelina/farmacologia , Flagelina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Células HeLa , NF-kappa B/metabolismo , Cauda , Citocinas/genética , Citocinas/metabolismo
18.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069120

RESUMO

Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a "mimicking experiment", in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively.


Assuntos
Melaninas , Salmo salar , Animais , Melaninas/metabolismo , Salmo salar/metabolismo , Di-Hidroxifenilalanina , Pigmentação
19.
J Exp Biol ; 226(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921456

RESUMO

Stress and elevated plasma cortisol in salmonids have been linked with pathological remodeling of the heart and deterioration of fitness and welfare. However, these associations were based on biomarkers that fail to provide a retrospective view of stress. This study is the first whereby the association of long-term stress, using scale cortisol as a chronic stress biomarker, with cardiac morphology and growth performance of wild Atlantic salmon (Salmo salar) is made. Growth, heart morphology, plasma and scale cortisol levels, and expression of genes involved in cortisol regulation of the hypothalamic-pituitary-interrenal axis of undisturbed fish (control) were compared with those of fish exposed daily to stress for 8 weeks. Though scale cortisol levels showed a time-dependent accumulation in both groups, plasma and scale cortisol levels of stress group fish were 29.1% and 25.0% lower than those of control fish, respectively. These results correlated with the overall upregulation of stress-axis genes involved in the systemic negative feedback of cortisol, and local feedback via 11ß-hydroxysteroid dehydrogenases, glucocorticoid and mineralocorticoid receptors in the stress treatment at the hypothalamus and pituitary level. These lower cortisol levels were, however, counterintuitive in terms of the growth performance as stress group fish grew 33.7% slower than control fish, which probably influenced the 8.4% increase in relative ventricle mass in the stress group. Though compact myocardium area between the treatments was comparable, these parameters showed significant linear correlations with scale cortisol levels, indicating the involvement of chronic stress in cardiac remodeling. These findings underscore the importance of scale cortisol as biomarker when associating chronic stress with long-term processes including cardiac remodeling.


Assuntos
Salmo salar , Animais , Salmo salar/metabolismo , Hidrocortisona , Regulação para Baixo , Estudos Retrospectivos , Remodelação Ventricular , Estresse Fisiológico , Biomarcadores
20.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834004

RESUMO

The NLRP3, one of the most heavily studied inflammasome-related proteins in mammals, remains inadequately characterized in Atlantic salmon (Salmo salar), despite the significant commercial importance of this salmonid. The NLRP3 inflammasome is composed of the NLRP3 protein, which is associated with procaspase-1 via an adapter molecule known as ASC. This work aims to characterize the Salmo salar NLRP3 inflammasome through in silico structural modeling, functional transcript expression determination in the SHK-1 cell line in vitro, and a transcriptome analysis on Atlantic salmon. The molecular docking results suggested a similar arrangement of the ternary complex between NLRP3, ASC, and caspase-1 in both the Atlantic salmon and the mammalian NLRP3 inflammasomes. Moreover, the expression results confirmed the functionality of the SsNLRP3 inflammasome in the SHK-1 cells, as evidenced by the lipopolysaccharide-induced increase in the transcription of genes involved in inflammasome activation, including ASC and NLRP3. Additionally, the transcriptome results revealed that most of the inflammasome-related genes, including ASC, NLRP3, and caspase-1, were down-regulated in the Atlantic salmon following its adaptation to seawater (also known as parr-smolt transformation). This is correlated with a temporary detrimental effected on the immune system. Collectively, these findings offer novel insights into the evolutionarily conserved role of NLRP3.


Assuntos
Inflamassomos , Salmo salar , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Caspases/metabolismo , Transcriptoma , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA