Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243.781
Filtrar
1.
Methods Mol Biol ; 2834: 151-169, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312164

RESUMO

The pharmacological space comprises all the dynamic events that determine the bioactivity (and/or the metabolism and toxicity) of a given ligand. The pharmacological space accounts for the structural flexibility and property variability of the two interacting molecules as well as for the mutual adaptability characterizing their molecular recognition process. The dynamic behavior of all these events can be described by a set of possible states (e.g., conformations, binding modes, isomeric forms) that the simulated systems can assume. For each monitored state, a set of state-dependent ligand- and structure-based descriptors can be calculated. Instead of considering only the most probable state (as routinely done), the pharmacological space proposes to consider all the monitored states. For each state-dependent descriptor, the corresponding space can be evaluated by calculating various dynamic parameters such as mean and range values.The reviewed examples emphasize that the pharmacological space can find fruitful applications in structure-based virtual screening as well as in toxicity prediction. In detail, in all reported examples, the inclusion of the pharmacological space parameters enhances the resulting performances. Beneficial effects are obtained by combining both different binding modes to account for ligand mobility and different target structures to account for protein flexibility/adaptability.The proposed computational workflow that combines docking simulations and rescoring analyses to enrich the arsenal of docking-based descriptors revealed a general applicability regardless of the considered target and utilized docking engine. Finally, the EFO approach that generates consensus models by linearly combining various descriptors yielded highly performing models in all discussed virtual screening campaigns.


Assuntos
Simulação de Acoplamento Molecular , Ligantes , Humanos , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Descoberta de Drogas/métodos , Sítios de Ligação
2.
Methods Mol Biol ; 2856: 357-400, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283464

RESUMO

Three-dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, topologically associating domains (TADs), and A/B compartments, play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers and transcription factor binding site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, and TAD boundaries) and analyze their pros and cons. We also point out obstacles to the computational prediction of 3D interactions and suggest future research directions.


Assuntos
Cromatina , Aprendizado Profundo , Cromatina/genética , Cromatina/metabolismo , Humanos , Biologia Computacional/métodos , Aprendizado de Máquina , Genômica/métodos , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Sítios de Ligação , Genoma , Software
3.
Brief Bioinform ; 25(6)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39350338

RESUMO

Accurate prediction of transcription factor binding sites (TFBSs) is essential for understanding gene regulation mechanisms and the etiology of diseases. Despite numerous advances in deep learning for predicting TFBSs, their performance can still be enhanced. In this study, we propose MLSNet, a novel deep learning architecture designed specifically to predict TFBSs. MLSNet innovatively integrates multisize convolutional fusion with long short-term memory (LSTM) networks to effectively capture DNA-sparse higher-order sequence features. Further, MLSNet incorporates super token attention and Bi-LSTM to systematically extract and integrate higher-order DNA shape features. Experimental results on 165 ChIP-seq (chromatin immunoprecipitation followed by sequencing) datasets indicate that MLSNet consistently outperforms several state-of-the-art algorithms in the prediction of TFBSs. Specifically, MLSNet reports average metrics: 0.8306 for ACC, 0.8992 for AUROC, and 0.9035 for AUPRC, surpassing the second-best methods by 1.82%, 1.68%, and 1.54%, respectively. This research delineates the effectiveness of combining multi-size convolutional layers with LSTM and DNA shape-based features in enhancing predictive accuracy. Moreover, this study comprehensively assesses the variability in model performance across different cell lines and transcription factors. The source code of MLSNet is available at https://github.com/minghaidea/MLSNet.


Assuntos
Aprendizado Profundo , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Sítios de Ligação , Algoritmos , Biologia Computacional/métodos , Humanos , Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA/metabolismo , DNA/química
4.
Nat Commun ; 15(1): 8490, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353889

RESUMO

P2X receptors are a family of seven trimeric non-selective cation channels that are activated by extracellular ATP to play roles in the cardiovascular, neuronal, and immune systems. Although it is known that the P2X1 receptor subtype has increased sensitivity to ATP and fast desensitization kinetics, an underlying molecular explanation for these subtype-selective features is lacking. Here we report high-resolution cryo-EM structures of the human P2X1 receptor in the apo closed, ATP-bound desensitized, and the high-affinity antagonist NF449-bound inhibited states. The apo closed and ATP-bound desensitized state structures of human P2X1 define subtype-specific properties such as distinct pore architecture and ATP-interacting residues. The NF449-bound inhibited state structure of human P2X1 reveals that NF449 has a unique dual-ligand supramolecular binding mode at the interface of neighboring protomers, inhibiting channel activation by overlapping with the canonical P2X receptor ATP-binding site. Altogether, these data define the molecular pharmacology of the human P2X1 receptor laying the foundation for structure-based drug design.


Assuntos
Trifosfato de Adenosina , Microscopia Crioeletrônica , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X1 , Humanos , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X1/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Ligantes , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ligação Proteica , Sítios de Ligação , Células HEK293 , Modelos Moleculares , Benzenossulfonatos
5.
Nat Commun ; 15(1): 8485, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353916

RESUMO

TRIM25 is an RNA-binding ubiquitin E3 ligase with central but poorly understood roles in the innate immune response to RNA viruses. The link between TRIM25's RNA binding and its role in innate immunity has not been established. Thus, we utilized a multitude of biophysical techniques to identify key RNA-binding residues of TRIM25 and developed an RNA-binding deficient mutant (TRIM25-m9). Using iCLIP2 in virus-infected and uninfected cells, we identified TRIM25's RNA sequence and structure specificity, that it binds specifically to viral RNA, and that the interaction with RNA is critical for its antiviral activity.


Assuntos
Ligação Proteica , RNA Viral , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Humanos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , RNA Viral/metabolismo , RNA Viral/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células HEK293 , Imunidade Inata , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Antivirais/metabolismo , Antivirais/farmacologia , Vírus de RNA/genética , Sítios de Ligação
6.
Nat Commun ; 15(1): 7029, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353917

RESUMO

The melanocortin receptor 4 (MC4R) belongs to the melanocortin receptor family of G-protein coupled receptors and is a key switch in the leptin-melanocortin molecular axis that controls hunger and satiety. Brain-produced hormones such as α-melanocyte-stimulating hormone (agonist) and agouti-related peptide (inverse agonist) regulate the molecular communication of the MC4R axis but are promiscuous for melanocortin receptor subtypes and induce a wide array of biological effects. Here, we use a chimeric construct of conformation-selective, nanobody-based binding domain (a ConfoBody Cb80) and active state-stabilized MC4R-ß2AR hybrid for efficient de novo discovery of a sequence diverse panel of MC4R-specific, potent and full agonistic nanobodies. We solve the active state MC4R structure in complex with the full agonistic nanobody pN162 at 3.4 Å resolution. The structure shows a distinct interaction with pN162 binding deeply in the orthosteric pocket. MC4R peptide agonists, such as the marketed setmelanotide, lack receptor selectivity and show off-target effects. In contrast, the agonistic nanobody is highly specific and hence can be a more suitable agent for anti-obesity therapeutic intervention via MC4R.


Assuntos
Receptor Tipo 4 de Melanocortina , Anticorpos de Domínio Único , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/metabolismo , alfa-MSH/química , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Células HEK293 , Ligação Proteica , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Animais
7.
Commun Biol ; 7(1): 1230, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354058

RESUMO

Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA's role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket.


Assuntos
Cálcio , Neuraminidase , Neuraminidase/metabolismo , Neuraminidase/genética , Neuraminidase/química , Humanos , Animais , Cálcio/metabolismo , Suínos , Sítios de Ligação , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Influenza Humana/virologia , Influenza Humana/transmissão , Adaptação Fisiológica/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Mutação , Ligação Proteica , Doenças dos Suínos/virologia
8.
Commun Biol ; 7(1): 1233, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354127

RESUMO

Overgrowth of Gardnerella vaginalis causes an imbalance in vaginal microecology. The pathogenicity of G. vaginalis is directly regulated by the cAMP receptor protein (CRP). In this study, we resolve the crystal structure of CRPGv at a resolution of 2.22 Å and find some significant differences from homologous proteins. The first 23 amino acids of CRPGv are inserted into the ligand binding pocket, creating a strong steric barrier to ligand entry that has not been seen previously in its homologues. In the absence of ligands, the two α helices used by CRPGv to bind oligonucleotide chains are exposed and can specifically bind TGTGA-N6-TCACA sequences. cAMP and other ligands of CRP homologs are not cofactors of CRPGv. There is no coding gene of the adenylate cyclase, and cAMP could not be identified in G. vaginalis by liquid chromatography tandem mass spectrometry. We speculate that CRPGv may achieve fine regulation through a conformational transformation different from that of its homologous proteins, and this conformational transformation is no longer dependent on small molecules, but may be aided by accessory proteins. CRPGv is the first discovered CRP that is not ligand-regulated, and its active conformation provides a structural basis for drug screening.


Assuntos
Gardnerella vaginalis , Ligantes , Gardnerella vaginalis/genética , Gardnerella vaginalis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/química , Cristalografia por Raios X , Sítios de Ligação , Modelos Moleculares , Sequência de Aminoácidos , Ligação Proteica , Conformação Proteica
9.
Mol Biol (Mosk) ; 58(2): 270-281, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39355884

RESUMO

The complement inhibitor CD55/DAF is expressed on many cell types. Dysregulation of CD55 expression is associated with increased disease severity in influenza A infection and vascular complications in pathologies that involve excessive activation of the complement system. A luciferase reporter system was used to functionally analyze the single nucleotide polymorphism rs2564978 in the U937 human promonocytic cell line. The polymorphism is in the promoter of the CD55 gene, and its minor allele T is associated with a severe course of influenza A(H1N1)pdm09. A decreased activity of the CD55 promoter carrying the minor rs2564978(T) allele was observed in activated U937 cells, which provide a cell model of human macrophages. Using bioinformatics resources, PU.1 was identified as a potential transcription factor that may bind to the CD55 promoter at the rs2564978 site in an allele-specific manner. The involvement of PU.1 in modulating CD55 promoter activity was verified by a PU.1 genetic knockdown with small interfering RNAs under specific monocyte activation conditions.


Assuntos
Alelos , Influenza Humana , Macrófagos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas , Transativadores , Humanos , Transativadores/genética , Transativadores/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Macrófagos/metabolismo , Células U937 , Influenza Humana/genética , Sítios de Ligação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Regulação da Expressão Gênica
10.
Sci Adv ; 10(37): eadp7040, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39259792

RESUMO

The activation of a G protein-coupled receptor (GPCR) leads to the formation of a ternary complex between agonist, receptor, and G protein that is characterized by high-affinity binding. Allosteric modulators bind to a distinct binding site from the orthosteric agonist and can modulate both the affinity and the efficacy of orthosteric agonists. The influence allosteric modulators have on the high-affinity active state of the GPCR-G protein ternary complex is unknown due to limitations on attempting to characterize this interaction in recombinant whole cell or membrane-based assays. Here, we use the purified M2 muscarinic acetylcholine receptor reconstituted into nanodiscs to show that, once the agonist-bound high-affinity state is promoted by the G protein, positive allosteric modulators stabilize the ternary complex that, in the presence of nucleotides, leads to an enhanced initial rate of signaling. Our results enhance our understanding of how allosteric modulators influence orthosteric ligand signaling and will aid the design of allosteric therapeutics.


Assuntos
Ligação Proteica , Receptor Muscarínico M2 , Receptores Acoplados a Proteínas G , Regulação Alostérica , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/química , Ligantes , Sítios de Ligação , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Sítio Alostérico
11.
Nat Commun ; 15(1): 7710, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231991

RESUMO

As the first identified multidrug efflux pump in Mycobacterium tuberculosis (Mtb), EfpA is an essential protein and promising drug target. However, the functional and inhibitory mechanisms of EfpA are poorly understood. Here we report cryo-EM structures of EfpA in outward-open conformation, either bound to three endogenous lipids or the inhibitor BRD-8000.3. Three lipids inside EfpA span from the inner leaflet to the outer leaflet of the membrane. BRD-8000.3 occupies one lipid site at the level of inner membrane leaflet, competitively inhibiting lipid binding. EfpA resembles the related lysophospholipid transporter MFSD2A in both overall structure and lipid binding sites and may function as a lipid flippase. Combining AlphaFold-predicted EfpA structure, which is inward-open, we propose a complete conformational transition cycle for EfpA. Together, our results provide a structural and mechanistic foundation to comprehend EfpA function and develop EfpA-targeting anti-TB drugs.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Conformação Proteica
12.
Nat Commun ; 15(1): 7759, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237617

RESUMO

Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity and improve current medications by reducing off-target side effects. However, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R:GαOßγ complex bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.


Assuntos
Microscopia Crioeletrônica , Receptores de Dopamina D3 , Humanos , Sítios de Ligação , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/agonistas , Células HEK293 , Ligantes , Ligação Proteica , Animais , Modelos Moleculares
13.
Nat Commun ; 15(1): 7992, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266522

RESUMO

Glucose is the primary source of energy for many organisms and is efficiently taken up by bacteria through a dedicated transport system that exhibits high specificity. In Escherichia coli, the glucose-specific transporter IICBGlc serves as the major glucose transporter and functions as a component of the phosphoenolpyruvate-dependent phosphotransferase system. Here, we report cryo-electron microscopy (cryo-EM) structures of the glucose-bound IICBGlc protein. The dimeric transporter embedded in lipid nanodiscs was captured in the occluded, inward- and occluded, outward-facing conformations. Together with biochemical and biophysical analyses, and molecular dynamics (MD) simulations, we provide insights into the molecular basis and dynamics for substrate recognition and binding, including the gates regulating the binding sites and their accessibility. By combination of these findings, we present a mechanism for glucose transport across the plasma membrane. Overall, this work provides molecular insights into the structure, dynamics, and mechanism of the IICBGlc transporter in a native-like lipid environment.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli , Escherichia coli , Glucose , Simulação de Dinâmica Molecular , Escherichia coli/metabolismo , Escherichia coli/genética , Glucose/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sítios de Ligação , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/genética , Conformação Proteica , Transporte Biológico , Ligação Proteica
14.
Nat Commun ; 15(1): 7722, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242571

RESUMO

In Candida albicans, Cdr1 pumps azole drugs out of the cells to reduce intracellular accumulation at detrimental concentrations, leading to azole-drug resistance. Milbemycin oxime, a veterinary anti-parasitic drug, strongly and specifically inhibits Cdr1. However, how Cdr1 recognizes and exports azole drugs, and how milbemycin oxime inhibits Cdr1 remain unclear. Here, we report three cryo-EM structures of Cdr1 in distinct states: the apo state (Cdr1Apo), fluconazole-bound state (Cdr1Flu), and milbemycin oxime-inhibited state (Cdr1Mil). Both the fluconazole substrate and the milbemycin oxime inhibitor are primarily recognized within the central cavity of Cdr1 through hydrophobic interactions. The fluconazole is suggested to be exported from the binding site into the environment through a lateral pathway driven by TM2, TM5, TM8 and TM11. Our findings uncover the inhibitory mechanism of milbemycin oxime, which inhibits Cdr1 through competition, hindering export, and obstructing substrate entry. These discoveries advance our understanding of Cdr1-mediated azole resistance in C. albicans and provide the foundation for the development of innovative antifungal drugs targeting Cdr1 to combat azole-drug resistance.


Assuntos
Antifúngicos , Azóis , Candida albicans , Microscopia Crioeletrônica , Proteínas Fúngicas , Proteínas de Membrana Transportadoras , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Antifúngicos/farmacologia , Antifúngicos/química , Azóis/farmacologia , Azóis/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , Farmacorresistência Fúngica , Fluconazol/farmacologia , Sítios de Ligação
15.
Nat Commun ; 15(1): 7795, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242530

RESUMO

ρ-type γ-aminobutyric acid-A (GABAA) receptors are widely distributed in the retina and brain, and are potential drug targets for the treatment of visual, sleep and cognitive disorders. Endogenous neuroactive steroids including ß-estradiol and pregnenolone sulfate negatively modulate the function of ρ1 GABAA receptors, but their inhibitory mechanisms are not clear. By combining five cryo-EM structures with electrophysiology and molecular dynamics simulations, we characterize binding sites and negative modulation mechanisms of ß-estradiol and pregnenolone sulfate at the human ρ1 GABAA receptor. ß-estradiol binds in a pocket at the interface between extracellular and transmembrane domains, apparently specific to the ρ subfamily, and disturbs allosteric conformational transitions linking GABA binding to pore opening. In contrast, pregnenolone sulfate binds inside the pore to block ion permeation, with a preference for activated structures. These results illuminate contrasting mechanisms of ρ1 inhibition by two different neuroactive steroids, with potential implications for subtype-specific gating and pharmacological design.


Assuntos
Microscopia Crioeletrônica , Estradiol , Simulação de Dinâmica Molecular , Pregnenolona , Receptores de GABA-A , Humanos , Sítios de Ligação , Estradiol/metabolismo , Estradiol/farmacologia , Células HEK293 , Pregnenolona/metabolismo , Pregnenolona/farmacologia , Pregnenolona/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/química
16.
Nat Commun ; 15(1): 8071, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277579

RESUMO

The ATP-independent chaperone SurA protects unfolded outer membrane proteins (OMPs) from aggregation in the periplasm of Gram-negative bacteria, and delivers them to the ß-barrel assembly machinery (BAM) for folding into the outer membrane (OM). Precisely how SurA recognises and binds its different OMP clients remains unclear. Escherichia coli SurA comprises three domains: a core and two PPIase domains (P1 and P2). Here, by combining methyl-TROSY NMR, single-molecule Förster resonance energy transfer (smFRET), and bioinformatics analyses we show that SurA client binding is mediated by two binding hotspots in the core and P1 domains. These interactions are driven by aromatic-rich motifs in the client proteins, leading to SurA core/P1 domain rearrangements and expansion of clients from collapsed, non-native states. We demonstrate that the core domain is key to OMP expansion by SurA, and uncover a role for SurA PPIase domains in limiting the extent of expansion. The results reveal insights into SurA-OMP recognition and the mechanism of activation for an ATP-independent chaperone, and suggest a route to targeting the functions of a chaperone key to bacterial virulence and OM integrity.


Assuntos
Proteínas de Transporte , Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Peptidilprolil Isomerase , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Sítios de Ligação , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Peptidilprolil Isomerase/genética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína
17.
Nat Commun ; 15(1): 8230, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300080

RESUMO

The signaling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) regulates many ion channels. It inhibits eukaryotic cyclic nucleotide-gated (CNG) channels while activating their relatives, the hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels. The prokaryotic SthK channel from Spirochaeta thermophila shares features with CNG and HCN channels and is an established model for this channel family. Here, we show SthK activity is inhibited by PIP2. A cryo-EM structure of SthK in nanodiscs reveals a PIP2-fitting density coordinated by arginine and lysine residues from the S4 helix and the C-linker, located between voltage-sensing and pore domains of adjacent subunits. Mutation of two arginine residues weakens PIP2 inhibition with the double mutant displaying insensitivity to PIP2. We propose that PIP2 inhibits SthK by gluing S4 and S6 together, stabilizing a resting channel conformation. The PIP2 binding site is partially conserved in CNG channels suggesting the possibility of a similar inhibition mechanism in the eukaryotic homologs.


Assuntos
Microscopia Crioeletrônica , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Fosfatidilinositol 4,5-Difosfato , Spirochaeta , Fosfatidilinositol 4,5-Difosfato/metabolismo , Spirochaeta/metabolismo , Spirochaeta/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Sítios de Ligação , Ativação do Canal Iônico , Mutação , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Arginina/metabolismo , Arginina/química
18.
BMC Bioinformatics ; 25(1): 306, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304807

RESUMO

BACKGROUND: Locating small molecule binding sites in target proteins, in the resolution of either pocket or residue, is critical in many drug-discovery scenarios. Since it is not always easy to find such binding sites using conventional methods, different deep learning methods to predict binding sites out of protein structures have been developed in recent years. The existing deep learning based methods have several limitations, including (1) the inefficiency of the CNN-only architecture, (2) loss of information due to excessive post-processing, and (3) the under-utilization of available data sources. METHODS: We present a new model architecture and training method that resolves the aforementioned problems. First, by layering geometric self-attention units on top of residue-level 3D CNN outputs, our model overcomes the problems of CNN-only architectures. Second, by configuring the fundamental units of computation as residues and pockets instead of voxels, our method reduced the information loss from post-processing. Lastly, by employing inter-resolution transfer learning and homology-based augmentation, our method maximizes the utilization of available data sources to a significant extent. RESULTS: The proposed method significantly outperformed all state-of-the-art baselines regarding both resolutions-pocket and residue. An ablation study demonstrated the indispensability of our proposed architecture, as well as transfer learning and homology-based augmentation, for achieving optimal performance. We further scrutinized our model's performance through a case study involving human serum albumin, which demonstrated our model's superior capability in identifying multiple binding sites of the protein, outperforming the existing methods. CONCLUSIONS: We believe that our contribution to the literature is twofold. Firstly, we introduce a novel computational method for binding site prediction with practical applications, substantiated by its strong performance across diverse benchmarks and case studies. Secondly, the innovative aspects in our method- specifically, the design of the model architecture, inter-resolution transfer learning, and homology-based augmentation-would serve as useful components for future work.


Assuntos
Proteínas , Sítios de Ligação , Proteínas/química , Proteínas/metabolismo , Aprendizado Profundo , Biologia Computacional/métodos , Ligação Proteica , Humanos , Bases de Dados de Proteínas
19.
Protein Sci ; 33(10): e5157, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312281

RESUMO

Toxoplasmosis persists as a prevalent disease, facing challenges from parasite resistance and treatment side effects. Consequently, identifying new drugs by exploring novel protein targets is essential for effective intervention. Cyclosporin A (CsA) possesses antiparasitic activity against Toxoplasma gondii, with cyclophilins identified as possible targets. However, CsA immunosuppressive nature hinders its use as an antitoxoplasmosis agent. Here, we evaluate the potential of three CsA derivatives devoid of immunosuppressive activity, namely, NIM811, Alisporivir, and dihydrocyclosporin A to target a previously characterized cyclophilin from Toxoplasma gondii (TgCyp23). We determined the X-ray crystal structures of TgCyp23 in complex with the three analogs and elucidated their binding and inhibitory properties. The high resolution of the structures revealed the precise positioning of ligands within the TgCyp23 binding site and the details of protein-ligand interactions. A comparison with the established ternary structure involving calcineurin indicates that substitutions at position 4 in CsA derivatives prevent calcineurin binding. This finding provides a molecular explanation for why CsA analogs can target Toxoplasma cyclophilins without compromising the human immune response.


Assuntos
Ciclofilinas , Ciclosporina , Toxoplasma , Toxoplasma/efeitos dos fármacos , Ciclofilinas/química , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/metabolismo , Cristalografia por Raios X , Ciclosporina/química , Ciclosporina/farmacologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Modelos Moleculares , Sítios de Ligação , Ciclosporinas/química , Ciclosporinas/farmacologia
20.
Nat Commun ; 15(1): 8175, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289391

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway. Subsequent binding studies confirm the obtained structural model of the complex, eventually revealing the interaction site of CDNF and GRP78. Finally, mutating the key residues of CDNF mediating its interaction with GRP78 not only results in impaired binding of CDNF but also abolishes the neuroprotective activity of CDNF-derived peptides in mesencephalic neuron cultures. These results suggest that the molecular interaction with GRP78 mediates the neuroprotective actions of CDNF and provide a structural basis for development of next generation CDNF-based therapeutic compounds against neurodegenerative diseases.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Resposta a Proteínas não Dobradas , Chaperona BiP do Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Animais , Ligação Proteica , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Neurônios/metabolismo , Modelos Moleculares , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA