Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 60(6): 790-800, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531871

RESUMO

INTRODUCTION: Reduced expression of the vesicular acetylcholine transporter (VAChT) leads to changes in the distribution and shape of synaptic vesicles (SVs) at neuromuscular junctions (NMJs), suggesting vesicular acetylcholine (ACh) as a key component of synaptic structure and function. It is poorly understood how long-term changes in cholinergic transmission contribute to age- and disease-related degeneration in the motor system. METHODS: In this study we performed confocal imaging, electrophysiology, electron microscopy, and analyses of respiratory mechanics of the diaphragm NMJ components in 12-month-old wild-type (WT) and VAChTKDHOM mice. RESULTS: Diaphragms of NMJs of the VAChTKDHOM mice were similar to those in WT mice in number, colocalization, and fragmentation of pre-/postsynaptic components. However, they had increased spontaneous SV exocytosis, miniature endplate potential frequency, and diminished MEPP amplitude. No impairment in respiratory mechanics at rest was observed, probably due to the large neurotransmission safety factor of the diaphragm. DISCUSSION: The present findings help us to understand the consequences of reduced ACh release at the NMJs during aging.


Assuntos
Envelhecimento/patologia , Diafragma/ultraestrutura , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Acetilcolina/metabolismo , Envelhecimento/metabolismo , Animais , Diafragma/metabolismo , Diafragma/fisiopatologia , Modelos Animais de Doenças , Endocitose , Potenciais Pós-Sinápticos Excitadores/fisiologia , Exocitose , Técnicas de Silenciamento de Genes , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Placa Motora , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/fisiopatologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Mecânica Respiratória/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética
2.
Neurochem Int ; 120: 1-12, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30003945

RESUMO

Congenital myasthenic syndromes (CMS) result from reduced cholinergic transmission at neuromuscular junctions (NMJs). While the etiology of CMS varies, the disease is characterized by muscle weakness. To date, it remains unknown if CMS causes long-term and irreversible changes to skeletal muscles. In this study, we examined skeletal muscles in a mouse line with reduced expression of Vesicular Acetylcholine Transporter (VAChT, mouse line herein called VAChT-KDHOM). We examined this mouse line for several reasons. First, VAChT plays a central function in loading acetylcholine (ACh) into synaptic vesicles and releasing it at NMJs, in addition to other cholinergic nerve endings. Second, loss of function mutations in VAChT causes myasthenia in humans. Importantly, VAChT-KDHOM present with reduced ACh and muscle weakness, resembling CMS. We evaluated the morphology, fiber type (myosin heavy chain isoforms), and expression of muscle-related genes in the extensor digitorum longus (EDL) and soleus muscles. This analysis revealed that while muscle fibers atrophy in the EDL, they hypertrophy in the soleus muscle of VAChT-KDHOM mice. Along with these cellular changes, skeletal muscles exhibit altered levels of markers for myogenesis (Pax-7, Myogenin, and MyoD), oxidative metabolism (PGC1-α and MTND1), and protein degradation (Atrogin1 and MuRF1) in VAChT-KDHOM mice. Importantly, we demonstrate that deleterious changes in skeletal muscles and motor deficits can be partially reversed following the administration of the cholinesterase inhibitor, pyridostigmine in VAChT-KDHOM mice. These findings reveal that fast and slow type muscles differentially respond to cholinergic deficits. Additionally, this study shows that the adverse effects of cholinergic transmission, as in the case of CMS, on fast and slow type skeletal muscles are reversible.


Assuntos
Acetilcolina/metabolismo , Músculo Esquelético/metabolismo , Síndromes Miastênicas Congênitas/metabolismo , Vesículas Sinápticas/metabolismo , Acetilcolina/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
3.
Channels (Austin) ; 2(3): 180-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836288

RESUMO

Cholesterol modulates the plasmalemma's biophysical properties and influences the function and trafficking of membrane proteins. A fundamental phenomenon that remains obscure is how the plasmalemma's lipid composition regulates the activatable pool of membrane receptors. An outstanding model to study this phenomenon is the nicotinic acetylcholine receptor (nAChR), since the nAChR activatable pool has been estimated to be but a small fraction of the receptors present in the plasmalemma. Studies on the effect of cholesterol depletion in the function of the Torpedo californica nAChR, using the lipid-exposed nAChR mutation (alpha C418W) that produces a congenital myasthenic syndrome (CMS), demonstrated that cholesterol depletion causes a remarkable increase in the alpha C418W nAChR's macroscopic current whereas not in the wild-type (WT). A variety of approaches were used to define the mechanism responsible for the cholesterol depletion mediated-increase in the alpha C418W nAChR's macroscopic current. The present study suggests that a substantial fraction of the alpha C418W nAChRs is located in caveolin-1-positive domains, "trapped" in a non-activatable state, and that membrane cholesterol depletion results in the relocation of these receptors to the activatable pool. Co-fractionation and co-immunoprecipitation of the alpha C418W nAChR and the membrane raft protein caveolin-1 (cav1) support the notion that interactions at lipid-exposed domains regulate the partition of the receptor into membrane raft microdomains. These results have potential implications as a novel mechanism to fine-tune cholinergic transmission in the nervous system and in the pathogenesis associated to the alpha C418W nAChR.


Assuntos
Caveolina 1/biossíntese , Síndromes Miastênicas Congênitas/genética , Receptores Nicotínicos/química , Animais , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Humanos , Cinética , Microdomínios da Membrana , Síndromes Miastênicas Congênitas/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Receptores Nicotínicos/metabolismo , Síndrome , Torpedo , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA