Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12224, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699383

RESUMO

Piscirickettsia salmonis is the causative agent of piscirickettsiosis, a disease with high socio-economic impacts for Chilean salmonid aquaculture. The identification of major environmental reservoirs for P. salmonis has long been ignored. Most microbial life occurs in biofilms, with possible implications in disease outbreaks as pathogen seed banks. Herein, we report on an in vitro analysis of biofilm formation by P. salmonis Psal-103 (LF-89-like genotype) and Psal-104 (EM-90-like genotype), the aim of which was to gain new insights into the ecological role of biofilms using multiple approaches. The cytotoxic response of the salmon head kidney cell line to P. salmonis showed interisolate differences, depending on the source of the bacterial inoculum (biofilm or planktonic). Biofilm formation showed a variable-length lag-phase, which was associated with wider fluctuations in biofilm viability. Interisolate differences in the lag phase emerged regardless of the nutritional content of the medium, but both isolates formed mature biofilms from 288 h onwards. Psal-103 biofilms were sensitive to Atlantic salmon skin mucus during early formation, whereas Psal-104 biofilms were more tolerant. The ability of P. salmonis to form viable and mucus-tolerant biofilms on plastic surfaces in seawater represents a potentially important environmental risk for the persistence and dissemination of piscirickettsiosis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Piscirickettsia/crescimento & desenvolvimento , Infecções por Piscirickettsiaceae/microbiologia , Animais , Aquicultura/métodos , Linhagem Celular , Chile , Doenças dos Peixes/microbiologia , Genótipo , Rim Cefálico/microbiologia , Piscirickettsia/genética , Salmo salar/microbiologia
2.
Dev Comp Immunol ; 77: 287-296, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28870451

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as key regulators in diverse biological processes across taxa. However, despite the importance of these transcripts, little is known about their role during the immune response in salmonids. Because of this, we use deep sequencing technologies to explore the microRNA-based transcriptomic response of the Atlantic salmon (Salmo salar) to the intracellular bacteria Piscirickettsia salmonis, one of the main threats to salmon aquaculture in Chile. Hence, 594 different miRNAs were identified from head kidney and spleen transcriptomic data. Among them, miRNA families mir-181, mir-143 and mir-21 were the most abundant in control groups, while after infection with P. salmonis, mir-21, mir-181 and mir-30 were the most predominant families. Furthermore, transcriptional analysis revealed 84 and 25 differentially expressed miRNAs in head kidney and spleen respectively, with an overlapping response of 10 miRNAs between the analyzed tissues. Target prediction, coupled with GO enrichment analysis, revealed that the possible targets of the most regulated miRNAs were genes involved in the immune response, such as cortisol metabolism, chemokine-mediated signaling pathway and neutrophil chemotaxis genes. Among these, predicted putative target genes such as C-C motif chemokine 19-like, stromal cell-derived factor 1-like, myxovirus resistance protein 2 and hepcidin-1 were identified. Overall, our results suggest that miRNA expression in co-modulation with transcription activity of target genes is related to putative roles of non-coding RNAs in the immune response of Atlantic salmon against intracellular bacterial pathogens.


Assuntos
Rim Cefálico/fisiologia , MicroRNAs/genética , Neutrófilos/fisiologia , Piscirickettsia/imunologia , Infecções por Piscirickettsiaceae/genética , Salmo salar/genética , Baço/fisiologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiotaxia/genética , Chile , Rim Cefálico/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hidrocortisona/metabolismo , Imunidade Inata/genética , Infecções por Piscirickettsiaceae/imunologia , Salmo salar/imunologia , Baço/microbiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA