Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.725
Filtrar
1.
Plant Mol Biol ; 114(5): 110, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361185

RESUMO

Jasmonic acid (JA), an important plant hormone, plays a crucial role in defending against herbivorous insects. In this study, we have identified a new Bowman-Birk type protease inhibitor (BBTI) protein in maize that is regulated by the JA pathway and exhibits significant antifeedant activity, which is notably induced by exogenous Methyl Jasmonate and Ostrinia furnacalis feeding treatments. Bioinformatics analysis revealed significant differences in the BBTI protein among different maize inbred lines, except for the conserved domain. Prokaryotic and eukaryotic expression systems were constructed and expressed, and combined with bioassays, it was demonstrated that the antifeedant activity of BBTI is determined by protein modifications and conserved domains. Through RT-qPCR detection of BBTI and JA regulatory pathway-related genes' temporal expression in different maize inbred lines, we identified the regulatory mechanism of BBTI synthesis under the JA pathway. This study successfully cloned and identified the MeJA-induced anti-feedant activity gene BBTI and conducted functional validation in different maize inbred lines, providing valuable insights into the response mechanism of insect resistance induced by the plant JA pathway. The increased expression of the anti-feedant activity gene BBTI through exogenous MeJA induction may offer a potential new strategy for mediating plant defense against Lepidoptan insects.


Assuntos
Acetatos , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Mariposas , Oxilipinas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/parasitologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Acetatos/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Herbivoria , Sequência de Aminoácidos , Filogenia
2.
BMC Plant Biol ; 24(1): 921, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358690

RESUMO

BACKGROUND: The UDP-glucuronosyltransferase 91D2 (SrUGT91D2) gene is a crucial element in the biosynthetic pathway of steviol glycosides (SGs) and is responsible for creating 1,2-ß-D glucosidic bonds at the C19 and C13 positions. This process plays a vital role in the synthesis of rebaudioside M (RM) and rebaudioside D (RD). The promoter, which regulates gene expression, requires functional analysis to understand gene expression regulation. However, investigations into the function of the promoter of SrUGT91D2 (pSrUGT91D2) have not been reported. RESULTS: The pSrUGT91D2 was isolated from six S. rebaudiana lines, and subsequent multiple sequence comparisons revealed the presence of a 26 bp inDel fragment (pSrUGT91D2-B1188 type) in lines GP, GX, 110, 1114, and B1188 but not in the pSrUGT91D2 of line 023 (pSrUGT91D2-023 type). Bioinformatics analysis revealed a prevalence of significant cis-regulatory elements (CREs) within the promoter sequences, including those responsive to abscisic acid, light, anaerobic conditions, auxin, drought, low temperature, and MeJA. To verify the activity of pSrUGT91D2, the full-length promoter and a series of 5' deletion fragments (P1-P7) and a 3' deletion fragment (P8) from various lines were fused with the reporter ß-glucuronidase (GUS) gene to construct the plant expression vector, pCAMBIA1300-pro∷GUS. The transcriptional activity of these genes was examined in tobacco leaves through transient transformation. GUS tissue staining analysis and enzyme activity assays demonstrated that both the full-length promoter and truncated pSrUGT91D2 were capable of initiating GUS expression in tobacco leaves. Interestingly, P8-pSrUGT91D2-B1188 (containing the inDel segment, 301 bp) exhibited enhanced activity in driving GUS gene expression. Transient expression studies of P8-pSrUGT91D2-B1188 and P8-pSrUGT91D2-023 in response to exogenous hormones (abscisic acid and indole-3-acetic acid) and light indicated the necessity of the inDel region for P8 to exhibit transcriptional activity, as it displayed strong responsiveness to abscisic acid (ABA), indole-3-acetic acid (IAA), and light induction. CONCLUSIONS: These findings contribute to a deeper understanding of the regulatory mechanism of the upstream region of the SrUGT91D2 gene and provide a theoretical basis for future studies on the interaction between CREs of pSrUGT91D2 and related transcription factors.


Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Regiões Promotoras Genéticas , Stevia , Estresse Fisiológico , Regiões Promotoras Genéticas/genética , Stevia/genética , Stevia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Diterpenos do Tipo Caurano/metabolismo
3.
Physiol Plant ; 176(5): e14488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228009

RESUMO

As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.


Assuntos
Acetatos , Ciclopentanos , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Oxilipinas , Folhas de Planta , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Flavonoides/metabolismo , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Asparagaceae/genética , Asparagaceae/metabolismo , Asparagaceae/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
4.
Braz J Biol ; 84: e279435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258720

RESUMO

Maize is a crop of global economic importance and is widely cultivated throughout the Brazilian territory. The use of biostimulants can increase yield and improve crop yield. Unmanned aerial vehicles can be employed in arable areas, allowing their use in an economically way. This study to evaluate the use of biostimulant and the best application timing using photogrammetric indexes in maize, and indicate the most suitable plant index for yield increase through a Pearson's correlation. The DJI Drone coupled with RGB camera was used, and the images were processed through the AgisoftPhotoscan® software to generate the orthomosaic, and the QGIS® software version 3.4.15 with GRASS was used to generate thematic maps with the classification of the indexes of vegetation (NGRDI, EXG, SAVI, TGI, GLI, RI). A matrix of Pearson correlation coefficients between the variables was also created, and the results were analyzed with the R software. In general, the products Pyroligneous Extract (PE) and the hormonal product (HP) were the best for the two seasons studied. However, the HP was the best product to mitigate plant water stress in the dry period. Application at phenological stage V3 showed the lowest growth in the rainy season and in application to the seeds in the dry season. Dose 4 of the pyroligneous extract increased productivity in the rainy season and level 3.4 for the hormone product. Among the indexes evaluated, only the SAVI index showed significant differences between the others and showed significance for productivity in the two periods.


Assuntos
Tecnologia de Sensoriamento Remoto , Estações do Ano , Zea mays , Zea mays/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia
5.
PeerJ ; 12: e18038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314842

RESUMO

Background: Seed hypocotyl germination signifies the initiation of the life cycle for plants and represents a critical stage that heavily influences subsequent plant growth and development. While previous studies have established the melatonin (MEL; N-acetyl-5-methoxytrytamine) effect to stimulate seed germination of some plants, its specific role in peony germination and underlying physiological mechanism have yet to be determined. This study aims to evaluate the MEL effect for the hypocotyl germination of peony seeds, further ascertain its physiological regulation factors. Methods: In this work, seeds of Paeonia ostia 'Fengdan' were soaked into MEL solution at concentrations of 50, 100, 200, and 400 µM for 48 h and then germinated in darkness in incubators. Seeds immersed in distilled water without MEL for the same time were served as the control group. Results: At concentrations of 100 and 200 µM, MEL treatments improved the rooting rate of peony seeds, while 400 µM inhibited the process. During seed germination, the 100 and 200 µM MEL treatments significantly reduced the starch concentration, and α-amylase was the primary amylase involved in the action of melatonin. Additionally, compared to the control group, 100 µM MEL treatment significantly increased the GA3 concentration and radicle thickness of seeds, but decreased ABA concentration. The promotion effect of 200 µM MEL pretreatment on GA1 and GA7 was the most pronounced, while GA4 concentration was most significantly impacted by 50 µM and 100 µM MEL. Conclusion: Correlation analysis established that 100 µM MEL pretreatment most effectively improved the rooting rate characterized by increasing α-amylase activity to facilitate starch decomposition, boosting GA3 levels, inhibiting ABA production to increase the relative ratio of GA3 to ABA. Moreover, MEL increased radicle thickness of peony seeds correlating with promoting starch decomposition and enhancing the synthesis of GA1 and GA7.


Assuntos
Germinação , Hipocótilo , Melatonina , Paeonia , Reguladores de Crescimento de Plantas , Sementes , Amido , Melatonina/farmacologia , Germinação/efeitos dos fármacos , Paeonia/efeitos dos fármacos , Paeonia/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , alfa-Amilases/metabolismo
6.
BMC Plant Biol ; 24(1): 907, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349999

RESUMO

BACKGROUND: The growth and yield of pepper, a typical temperature-loving vegetable, are limited by low-temperature environments. Using low-temperature sensitive 'Hangjiao No. 4' (Capsicum annuum L.) as experimental material, this study analyzed the changes in plant growth and photosynthesis under different treatments: normal control (NT), low-temperature stress alone (LT), low-temperature stress in strigolactone pretreated plants (SL_LT), and low-temperature stress in strigolactone biosynthesis inhibitor pretreated plants (Tis_LT). RESULTS: SL pretreatment increased the net photosynthetic rate (Pn) and PSII actual photochemical efficiency (φPSII), reducing the inhibition of LT on the growth of pepper by 17.44% (dry weight of shoot). Due to promoting the accumulation of carotenoids, such as lutein, and the de-epoxidation of the xanthophyll cycle [(Z + A)/(Z + A + V)] by strigolactone after long-term low-temperature stress (120 h), non-photochemical quenching (NPQ) of pepper was increased to reduce the excess excitation energy [(1-qP)/NPQ] and the photoinhibition degree (Fv/Fm) of pepper seedlings under long-term low-temperature stress was alleviated. Twelve cDNA libraries were constructed from pepper leaves by transcriptome sequencing. There were 8776 differentially expressed genes (DEGs), including 4473 (51.0%) upregulated and 4303 (49.0%) downregulated genes. Gene ontology pathway annotation showed that based on LT, the DEGs of SL_LT and Tis_LT were significantly enriched in the cellular component, which is mainly related to the photosystem and thylakoids. Further analysis of the porphyrin and chlorophyll biosynthesis, carotenoid biosynthesis, photosynthesis-antenna protein, and photosynthetic metabolic pathways and the Calvin cycle under low-temperature stress highlighted 18, 15, 21, 29, and 31 DEGs for further study, which were almost all highly expressed under SL_LT treatment and moderately expressed under LT treatment, whereas Tis_LT showed low expression. CONCLUSION: The positive regulatory effect of SLs on the low-temperature tolerance of pepper seedlings was confirmed. This study provided new insights for the development of temperature-tolerant pepper lines through breeding programs.


Assuntos
Capsicum , Temperatura Baixa , Lactonas , Fotossíntese , Plântula , Capsicum/fisiologia , Capsicum/genética , Capsicum/efeitos dos fármacos , Lactonas/metabolismo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Frio/fisiologia , Resposta ao Choque Frio/efeitos dos fármacos , Clorofila/metabolismo , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia
7.
BMC Plant Biol ; 24(1): 904, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350007

RESUMO

The growth and yield of rapeseed are significantly hampered by salt stress. Indole-3-butyric Acid Potassium Salt (IBA-K) has been found to alleviate the impact of salt stress on plant growth. However, the regulatory effect of IBA-K dipping on salt-stressed rapeseed remains unclear. To explore the implications of IBA-K on the growth and development of rapeseed during the seedling stage, we conducted potting experiments using the Huayouza 62 variety. Five different concentrations of IBA-K for seed soaking (0, 10, 20, 40, 80 mg·L- 1) were tested. The promotional impact of IBA-K on rapeseed demonstrated an initial increase followed by a decline, reaching a peak at 20 mg·L- 1. Therefore, 20 mg·L- 1 was determined as the optimal concentration for subsequent experiments. To further understand the mechanism of IBA-K's action on salt-stressed rapeseed seedlings, we utilized the moderately salt-resistant cabbage rapeseed variety Huayouza 158R and the highly salt-resistant Huayouza 62 as specimens. The investigation focused on their response and repair mechanisms under 150 mmol·L- 1 NaCl stress. The findings demonstrated that compared with the sole NaCl stress, the 20 mg·L- 1 IBA-K seed soaking treatment under salt stress significantly enhanced the plant height, stem diameter, and leaf area of both rapeseed varieties. It also led to greater biomass accumulation, increased chlorophyll content, and improved photosynthetic efficiency in rapeseed. Furthermore, this treatment bolstered the activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), while significantly reducing the levels of electrolyte leakage (EL) and malondialdehyde (MDA). Consequently, it alleviated the membrane lipid peroxidation damage induced by NaCl stress, enhanced the accumulation of soluble proteins, maintained cellular osmotic pressure, and effectively mitigated the adverse effects of NaCl stress on rapeseed.


Assuntos
Brassica napus , Indóis , Estresse Salino , Plântula , Sementes , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Indóis/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Tolerância ao Sal/efeitos dos fármacos
8.
BMC Plant Biol ; 24(1): 897, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343873

RESUMO

Heavy metal toxicity adversely affects plants by changing physiological, biochemical, and molecular mechanisms. Lead (Pb) is one of the most common heavy metal pollutants. Hence this study investigated changes caused by exogenous methyl jasmonate (MeJA; 20 and 100 µM) and salicylic acid (SA; 2 and 20 mM) elicitors in local Karacadag rice exposed to Pb stress (0, 100, and 400 ppm). The effects of elicitors on photosynthetic pigment content (chlorophyll a, chlorophyll b, and total carotenoid), proline, malondialdehyde (MDA), total phenolic and flavonoid, Pb, and total protein contents in stressed plants were evaluated. All parameters studied increased and decreased at varying rates in the treatment groups compared to the Pb-free group (control), indicating that rice plants were affected by Pb stress. The elicitors (MeJA, SA, and MeJA + SA) were applied by foliar spraying. The elicitor treatments increased photosynthetic pigment content, total protein, proline, total flavonoid, and phenolic contents depending on the elicitor type and concentration. MDA and Pb contents, increasing with Pb toxicity, decreased with elicitor treatments, and the stress degree was reduced. When the elicitors were compared, SA was more effective than MeJA in total flavonoid content at 400 ppm Pb toxicity. However, MeJA was more effective in photosynthetic pigment contents, MDA, total protein, Pb, total phenolic, and proline contents. The best results for all parameters examined in rice plants exposed to Pb toxicity were obtained from the 400 ppm Pb + 2 mM SA + 20 µM MeJA treatment group. In conclusion, this study showed that the combined application of MeJA + SA alleviated the harmful effects of Pb by reducing MDA and increasing photosynthetic pigments, total protein, proline, and secondary metabolites, especially at high Pb concentrations. Consequently, this study demonstrated that the combined use of MeJA and SA in rice plants eliminated the negative effects of stress quite effectively, even at high Pb concentrations. Therefore, future studies should focus on the synergistic application of different elicitors to better understand the effects of heavy metal toxicity on plant growth and development.


Assuntos
Acetatos , Clorofila , Ciclopentanos , Chumbo , Oryza , Oxilipinas , Ácido Salicílico , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Chumbo/toxicidade , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ácido Salicílico/farmacologia , Acetatos/farmacologia , Clorofila/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Prolina/metabolismo , Flavonoides , Carotenoides/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo
9.
PeerJ ; 12: e18073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346067

RESUMO

The plant-specific INDETERMINATE DOMAIN (IDD) gene family is important for plant growth and development. However, a comprehensive analysis of the IDD family in orchids is limited. Based on the genome data of Phalaenopsis equestris, the IDD gene family was identified and analyzed by bioinformatics methods in this study. Ten putative P. equestris IDD genes (PeIDDs) were characterized and phylogenetically classified into two groups according to their full amino acid sequences. Protein motifs analysis revealed that overall structures of PeIDDs in the same group were relatively conserved. Its promoter regions harbored a large number of responsive elements, including light responsive, abiotic stress responsive elements, and plant hormone cis-acting elements. The transcript level of PeIDD genes under cold and drought conditions, and by exogenous auxin (NAA) and abscisic acid (ABA) treatments further confirmed that most PeIDDs responded to various conditions and might play essential roles under abiotic stresses and hormone responses. In addition, distinct expression profiles in different tissues/organs suggested that PeIDDs might be involved in various development processes. Furthermore, the prediction of protein-protein interactions (PPIs) revealed some PeIDDs (PeIDD3 or PeIDD5) might function via cooperating with chromatin remodeling factors. The results of this study provided a reference for further understanding the function of PeIDDs.


Assuntos
Regulação da Expressão Gênica de Plantas , Orchidaceae , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Filogenia , Estresse Fisiológico/genética , Genoma de Planta , Regiões Promotoras Genéticas/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia
10.
Genes (Basel) ; 15(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336703

RESUMO

In plants, RopGEF-mediated ROP signaling is pivotal in cellular signaling pathways, including apical growth, pollen germination and perception, intercellular recognition, as well as in responses to biotic and abiotic stresses. In this study, we retrieved a total of 37 RopGEF members from three C4 Crops, of which 11 are from millet, 11 from sorghum, and 15 from maize. Based on their phylogenetic relationships and structural characteristics, all RopGEF members are classified into four subfamilies. The qRT-PCR technique was utilized to evaluate the expression profiles of 11 SiRopGEFs across different tissues in foxtail millet. The findings indicated that the majority of the SiRopGEFs exhibited higher expression levels in leaves as opposed to roots and stems. The levels of expression of SiRopGEF genes were examined in response to abiotic stress and plant hormones. SiRopGEF1, SiRopGEF5, SiRopGEF6, and SiRopGEF8 showed significant induction under abiotic stresses such as salt, cold, and heat. On the other hand, SiRopGEF1, SiRopGEF2, and SiRopGEF7 were consistently upregulated, while SiRopGEF3, SiRopGEF4, SiRopGEF6, SiRopGEF9, and SiRopGEF10 were downregulated upon exposure to abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and gibberellic acid (GA3) hormones. The alterations in the expression patterns of RopGEF members imply their potential functions in plant growth and development, abiotic stress response, and hormone signal transduction. These discoveries suggest that the RopGEF genes may function as a potential genetic marker to facilitate future studies in elucidating the functional characteristics of RopGEFs.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Família Multigênica , Sorghum/genética , Setaria (Planta)/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Genoma de Planta/genética
11.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337642

RESUMO

Much work has been dedicated to the quest to determine the structure-activity relationship in synthetic brassinosteroid (BR) analogs. Recently, it has been reported that analogs with phenyl or benzoate groups in the alkyl chain present activities comparable to those shown by natural BRs, depending on the nature of the substituent in the aromatic ring. However, as it is well known that the activity depends on the structure of the whole molecule, in this work, we have synthesized a series of compounds with the same substituted benzoate in the alkyl chain and a hydroxyl group at C3. The main goal was to compare the activities with analogs with -OH at C2 and C3. Additionally, a molecular-docking study and molecular dynamics simulations were performed to establish a correlation between the experimental and theoretical results. The synthesis of eight new BR analogs was described. All the analogs were fully characterized by spectroscopical methods. The bioactivity of these analogs was assessed using the rice lamina inclination test (RLIT) and the inhibition of the root and hypocotyl elongation of Arabidopsis thaliana. The results of the RLIT indicate that at the lowest tested concentration (1 × 10-8 M), in the BR analogs in which the aromatic ring was substituted at the para position with methoxy, the I and CN substituents were more active than brassinolide (50-72%) and 2-3 times more active than those analogs in which the substituent group was F, Cl or Br atoms. However, at the highest concentrations, brassinolide was the most active compound, and the structure-activity relationship changed. On the other hand, the results of the A. thaliana root sensitivity assay show that brassinolide and the analogs with I and CN as substituents on the benzoyl group were the most active compounds. These results are in line with those obtained via the RLIT. A comparison of these results with those obtained for similar analogs that had a hydroxyl group at C2 indicates the importance of considering the whole structure. The molecular-docking results indicate that all the analogs adopted a brassinolide-like orientation, while the stabilizing effect of the benzoate group on the interactions with the receptor complex provided energy binding values ranging between -10.17 and -13.17 kcal mol-1, where the analog with a nitrile group was the compound that achieved better contact with the amino acids present in the active site.


Assuntos
Arabidopsis , Brassinosteroides , Simulação de Acoplamento Molecular , Brassinosteroides/química , Brassinosteroides/síntese química , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos dos fármacos , Hipocótilo/química , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Estrutura Molecular
12.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337672

RESUMO

Aquaporins (AQPs) play an essential role in membrane water transport during plant responses to water stresses centered on conventional upstream signals. Phytohormones (PHs) regulate plant growth and yield, working with transcription factors to help plants withstand environmental challenges and regulate physiological and chemical processes. The AQP gene family is important, so researchers have studied its function and regulatory system in numerous species. Yet, there is a critical gap the understanding of many of their molecular features, thus our full knowledge of AQPs is far-off. In this study, we undertook a broad examination of the AQP family gene in Populus euphratica via bioinformatics tools and analyzed the expression patterns of certain members in response to drought, salt, and hormone stress. A total of 22 AQP genes were examined in P. euphratica, and were categorized into four main groups, including TIPs, PIPs, SIPs, and NIPs based on phylogenetic analysis. Comparable exon-intron gene structures were found by gene structure examination, and similarities in motif number and pattern within the same subgroup was determined by motif analysis. The PeuAQP gene family has numerous duplications, and there is a distinct disparity in how the members of the PeuAQP family react to post-translational modifications. Abiotic stress and hormone responses may be mediated by AQPs, as indicated by the abundance of stress response elements found in 22 AQP genes, as revealed by the promoter's cis-elements prediction. Expression pattern analysis reveals that selected six AQP genes from the PIP subgroup were all expressed in the leaves, stem, and roots with varying expression levels. Moreover, qRT-PCR analysis discovered that the majority of the selected AQP members were up- or down-regulated in response to hormone treatment and abiotic stress. Remarkably, PeuAQP14 and PeuAQP15 appeared to be highly responsive to drought stress and PeuAQP15 exhibited a high response to salt stress. The foliar application of the phytohormones (SA, IAA, GA3, MeJA, and ABA) were found to either activate or inhibit PeuAQP, suggesting that they may mitigate the effects of water shortage of poplar water stress. The present work enhances our knowledge of the practical roles of AQPs in stress reactions and offers fundamental information for the AQP genes in poplar species. It also highlights a direction for producing new varieties of poplar species with drought, salt, and hormone tolerance and holds substantial scientific and ecological importance, offering a potential contribution to the conservation of poplar species in arid regions.


Assuntos
Aquaporinas , Secas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Populus , Estresse Salino , Populus/genética , Populus/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Perfilação da Expressão Gênica
13.
Pak J Pharm Sci ; 37(3): 583-590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39340849

RESUMO

Gardenia jasminoides suspension culture has gained recognition as a functional approach for bioactive component development in the pharmaceutical industries but exhibits limited biomass accumulation and secondary metabolite production. This study presents the first record of maximum biomass production and demonstrates the cumulative levels of phenols, flavonoids and terpenoids observed through the growth trajectory of G. jasminoides suspension culture. Successful callus induction was obtained from leaf explants cultured on Murashige and Skoog (MS) medium augmented with a standardized conjunction of 1 mg/L of 2,4-Dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L kinetin (KT). The experimental outcomes revealed that on the 35th day, the in vitro suspension culture exhibited the highest biomass accumulation which was 5.43 times greater than the initial inoculation level. The study quantified total phenols, flavonoids, and terpenoids present in leaf explants, callus cultures, and suspension cultures and determined antioxidant efficacy. Findings suggest that an optimized growth regulator in G. jasminoides suspension culture significantly increases biomass accumulation. Quantification of secondary metabolites offers a promising path for future enhancement of their yield through elicitation and holds the potential to achieve extensive yield of cost-effective bioactive components.


Assuntos
Antioxidantes , Biomassa , Flavonoides , Gardenia , Fenóis , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Flavonoides/metabolismo , Flavonoides/análise , Fenóis/metabolismo , Gardenia/química , Gardenia/metabolismo , Gardenia/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Terpenos/metabolismo , Metabolismo Secundário , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/farmacologia
14.
Sci Rep ; 14(1): 22148, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333561

RESUMO

Stevia rebaudiana (Bertoni), commonly known as stevia, is a sought-after natural sweetener, but its conventional propagation methods are slow and inefficient. This study aims to enhance the in vitro culture for stevia by investigating the impact of different Murashige and Skoog (MS) medium salt strengths and plant growth hormones on growth and rebaudioside A content. Apical bud-containing shoot segments were used as explants and cultured on various semi-solid and liquid MS media formulations, incorporating cytokinins (BAP and Kin), auxins (NAA and IAA), and different MS major salt concentrations (MS full, ½ MS, and » MS). Assessments of shoot growth parameters, root formation, and HPLC analysis for rebaudioside A content were conducted. The optimal conditions for in vitro growth was found to be in the » MS + Kin 3 mg/L + NAA 0.1 mg/L (semi-solid) medium, resulting in significantly improved shoot growth and enhanced 30.04% rebaudioside A content. Genetic fidelity of regenerated plants was confirmed using RAPD and ISSR markers. These findings offer valuable insights for optimizing in vitro propagation of stevia and potentially enhancing rebaudioside A content.


Assuntos
Meios de Cultura , Diterpenos do Tipo Caurano , Reguladores de Crescimento de Plantas , Brotos de Planta , Stevia , Stevia/crescimento & desenvolvimento , Stevia/efeitos dos fármacos , Stevia/metabolismo , Stevia/química , Diterpenos do Tipo Caurano/metabolismo , Meios de Cultura/química , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Cloreto de Sódio/farmacologia
15.
BMC Biotechnol ; 24(1): 68, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334143

RESUMO

INTRODUCTION: Developing somatic embryogenesis is one of the main steps in successful in vitro propagation and gene transformation in the carrot. However, somatic embryogenesis is influenced by different intrinsic (genetics, genotype, and explant) and extrinsic (e.g., plant growth regulators (PGRs), medium composition, and gelling agent) factors which cause challenges in developing the somatic embryogenesis protocol. Therefore, optimizing somatic embryogenesis is a tedious, time-consuming, and costly process. Novel data mining approaches through a hybrid of artificial neural networks (ANNs) and optimization algorithms can facilitate modeling and optimizing in vitro culture processes and thereby reduce large experimental treatments and combinations. Carrot is a model plant in genetic engineering works and recombinant drugs, and therefore it is an important plant in research works. Also, in this research, for the first time, embryogenesis in carrot (Daucus carota L.) using Genetic algorithm (GA) and data mining technology has been reviewed and analyzed. MATERIALS AND METHODS: In the current study, data mining approach through multilayer perceptron (MLP) and radial basis function (RBF) as two well-known ANNs were employed to model and predict embryogenic callus production in carrot based on eight input variables including carrot cultivars, agar, magnesium sulfate (MgSO4), calcium dichloride (CaCl2), manganese (II) sulfate (MnSO4), 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), and kinetin (KIN). To confirm the reliability and accuracy of the developed model, the result obtained from RBF-GA model were tested in the laboratory. RESULTS: The results showed that RBF had better prediction efficiency than MLP. Then, the developed model was linked to a genetic algorithm (GA) to optimize the system. To confirm the reliability and accuracy of the developed model, the result of RBF-GA was experimentally tested in the lab as a validation experiment. The result showed that there was no significant difference between the predicted optimized result and the experimental result. CONCLUTIONS: Generally, the results of this study suggest that data mining through RBF-GA can be considered as a robust approach, besides experimental methods, to model and optimize in vitro culture systems. According to the RBF-GA result, the highest somatic embryogenesis rate (62.5%) can be obtained from Nantes improved cultivar cultured on medium containing 195.23 mg/l MgSO4, 330.07 mg/l CaCl2, 18.3 mg/l MnSO4, 0.46 mg/l 2,4- D, 0.03 mg/l BAP, and 0.88 mg/l KIN. These results were also confirmed in the laboratory.


Assuntos
Meios de Cultura , Mineração de Dados , Daucus carota , Técnicas de Embriogênese Somática de Plantas , Daucus carota/genética , Daucus carota/embriologia , Mineração de Dados/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , Meios de Cultura/química , Algoritmos , Redes Neurais de Computação , Reguladores de Crescimento de Plantas/farmacologia
16.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273109

RESUMO

Plants are an important source for the discovery of novel natural growth regulators. We used activity screening to demonstrate that treatment of Nipponbare seeds with 25 µg/mL isopimaric acid significantly increased the resulting shoot length, root length, and shoot weight of rice seedlings by 11.37 ± 5.05%, 12.96 ± 7.63%, and 27.98 ± 10.88% and that it has a higher activity than Gibberellin A3 (GA3) at the same concentration. A total of 213 inbred lines of different rice lineages were screened, and we found that isopimaric acid had different growth promotional activities on rice seedlings of different varieties. After induction with 25 µg/mL isopimaric acid, 15.02% of the rice varieties tested showed increased growth, while 15.96% of the varieties showed decreased growth; the growth of the remaining 69.02% did not show any significant change from the control. In the rice varieties showing an increase in growth, the shoot length and shoot weight significantly increased, accounting for 21.88% and 31.25%. The root length and weight significantly increased, accounting for 6.25% and 3.13%. Using genome-wide association studies (GWASs), linkage disequilibrium block, and gene haplotype significance analysis, we identified single nucleotide polymorphism (SNP) signals that were significantly associated with the length and weight of shoots on chromosomes 2 and 8, respectively. After that, we obtained 17 candidate genes related to the length of shoots and 4 candidate genes related to the weight of shoots. Finally, from the gene annotation data and gene tissue-specific expression; two genes related to this isopimaric acid regulation phenotype were identified as OsASC1 (LOC_Os02g37080) on chromosome 2 and OsBUD13 (LOC_Os08g08080) on chromosome 8. Subcellular localization analysis indicated that OsASC1 was expressed in the plasma membrane and the nuclear membrane, while OsBUD13 was expressed in the nucleus. Further RT-qPCR analysis showed that the relative expression levels of the resistance gene OsASC1 and the antibody protein gene OsBUD13 decreased significantly following treatment with 25 µg/mL isopimaric acid. These results suggest that isopimaric acid may inhibit defense pathways in order to promote the growth of rice seedlings.


Assuntos
Abietanos , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Oryza , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/efeitos dos fármacos , Locos de Características Quantitativas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
17.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273180

RESUMO

Rubisco small subunit (RbcS), a core component with crucial effects on the structure and kinetic properties of the Rubisco enzyme, plays an important role in response to plant growth, development, and various stresses. Although Rbcs genes have been characterized in many plants, their muti-functions in soybeans remain elusive. In this study, a total of 11 GmRbcS genes were identified and subsequently divided into three subgroups based on a phylogenetic relationship. The evolutionary analysis revealed that whole-genome duplication has a profound effect on GmRbcSs. The cis-acting elements responsive to plant hormones, development, and stress-related were widely found in the promoter region. Expression patterns based on the RT-qPCR assay exhibited that GmRbcS genes are expressed in multiple tissues, and notably Glyma.19G046600 (GmRbcS8) exhibited the highest expression level compared to other members, especially in leaves. Moreover, differential expressions of GmRbcS genes were found to be significantly regulated by exogenous plant hormones, demonstrating their potential functions in diverse biology processes. Finally, the function of GmRbcS8 in enhancing soybean resistance to soybean mosaic virus (SMV) was further determined through the virus-induced gene silencing (VIGS) assay. All these findings establish a strong basis for further elucidating the biological functions of RbcS genes in soybeans.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Filogenia , Reguladores de Crescimento de Plantas , Potyvirus , Glycine max/genética , Glycine max/virologia , Glycine max/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Potyvirus/patogenicidade , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Resistência à Doença/genética , Família Multigênica
18.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273302

RESUMO

Salt stress imposes significant plant limitations, altering their molecular, physiological, and biochemical functions. Pepper, a valuable herbaceous plant species of the Solanaceae family, is particularly susceptible to salt stress. This study aimed to elucidate the physiological and molecular mechanisms that contribute to the development of salt tolerance in two pepper species (Capsicum baccatum (moderate salt tolerant) and Capsicum chinense (salt sensitive)) through a transcriptome and weighted gene co-expression network analysis (WGCNA) approach to provide detailed insights. A continuous increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels in C. chinense and higher activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in C. baccatum indicated more tissue damage in C. chinense than in C. baccatum. In transcriptome analysis, we identified 39 DEGs related to salt stress. Meanwhile, KEGG pathway analysis revealed enrichment of MAPK and hormone signaling pathways, with six DEGs each. Through WGCNA, the ME.red module was identified as positively correlated. Moreover, 10 genes, A-ARR (CQW23_24856), CHIb (CQW23_04881), ERF1b (CQW23_08898), PP2C (CQW23_15893), ABI5 (CQW23_29948), P450 (CQW23_16085), Aldedh1 (CQW23_06433), GDA (CQW23_12764), Aldedh2 (CQW23_14182), and Aldedh3 (CQW23_11481), were validated by qRT-PCR. This study provides valuable insights into the genetic mechanisms underlying salt stress tolerance in pepper. It offers potential targets for future breeding efforts to enhance salt stress resilience in this crop.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Estresse Salino , Transdução de Sinais , Transcriptoma , Capsicum/genética , Capsicum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Redes Reguladoras de Genes
19.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273343

RESUMO

Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 µM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.


Assuntos
Brassinosteroides , Regulação da Expressão Gênica de Plantas , Esteroides Heterocíclicos , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Esteroides Heterocíclicos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Perfilação da Expressão Gênica/métodos , Espécies Reativas de Oxigênio/metabolismo , Temperatura Baixa , Estresse Fisiológico , Resposta ao Choque Frio , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
20.
Sci Rep ; 14(1): 20411, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223242

RESUMO

Wheat is an important staple crop not only in Pakistan but all over the globe. Although the area dedicated to wheat cultivation expands annually, the quantity of wheat harvested is declining due to various biotic and abiotic factors. Global wheat production and output have suffered as a result of the drought, which is largely driven by a lack of water and environmental factors. Organic fertilizers have been shown to reduce the severity of drought. The current research was conducted in semi-arid climates to mitigate the negative effects of drought on wheat during its critical tillering (DTS), flowering (DFS), and grain filling (DGFS) stages through the application of three different abscisic acid treatments: ABA0 (0 mgL-1) control, ABA1 (100 mgL-1) and ABA2 (200 mgL-1). Wheat growth and yield characteristics were severely harmed by drought stress across all critical development stages, with the DGFS stage being particularly vulnerable and leading to a considerable loss in yield. Plant height was increased by 24.25%, the number of fertile tillers by 25.66%, spike length by 17.24%, the number of spikelets per spike by 16.68%, grain count per spike by 11.98%, thousand-grain weight by 14.34%, grain yield by 26.93% and biological yield by 14.55% when abscisic acid (ABA) was applied instead of the control treatment. Moreover, ABA2 increased the more physiological indices (water use efficiency (36.12%), stomatal conductance (44.23%), chlorophyll a (24.5%), chlorophyll b (29.8%), transpiration rate (23.03%), photosynthetic rate (24.84%), electrolyte leakage (- 38.76%) hydrogen peroxide (- 18.09%) superoxide dismutase (15.3%), catalase (20.8%), peroxidase (- 18.09%), and malondialdehyde (- 13.7%)) of drought-stressed wheat as compared to other treatments. In the case of N, P, and K contents in grain were maximally improved with the application of ABA2. Through the use of principal component analysis, we were able to correlate our results across scales and provide an explanation for the observed effects of ABA on wheat growth and production under arid conditions. Overall, ABA application at a rate of 200 mgL-1 is an effective technique to boost wheat grain output by mitigating the negative effects of drought stress.


Assuntos
Ácido Abscísico , Secas , Triticum , Ácido Abscísico/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/fisiologia , Clorofila/metabolismo , Estresse Fisiológico , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA