Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.953
Filtrar
1.
Transl Psychiatry ; 14(1): 399, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353921

RESUMO

This study investigated how resting-state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC) predicts antidepressant response in patients with major depressive disorder (MDD). Eighty-seven medication-free MDD patients underwent baseline resting-state functional MRI scans. After 12 weeks of escitalopram treatment, patients were classified into remission depression (RD, n = 42) and nonremission depression (NRD, n = 45) groups. We conducted two analyses: a voxel-wise rsFC analysis using sgACC as a seed to identify group differences, and a prediction model based on the sgACC rsFC map to predict treatment efficacy. Haufe transformation was used to interpret the predictive rsFC features. The RD group showed significantly higher rsFC between the sgACC and regions in the fronto-parietal network (FPN), including the bilateral dorsolateral prefrontal cortex (DLPFC) and bilateral inferior parietal lobule (IPL), compared to the NRD group. These sgACC rsFC measures correlated positively with symptom improvement. Baseline sgACC rsFC also significantly predicted treatment response after 12 weeks, with a mean accuracy of 72.64% (p < 0.001), mean area under the curve of 0.74 (p < 0.001), mean specificity of 0.82, and mean sensitivity of 0.70 in 10-fold cross-validation. The predictive voxels were mainly within the FPN. The rsFC between the sgACC and FPN is a valuable predictor of antidepressant response in MDD patients. These findings enhance our understanding of the neurobiological mechanisms underlying treatment response and could help inform personalized treatment strategies for MDD.


Assuntos
Transtorno Depressivo Maior , Giro do Cíngulo , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Antidepressivos/uso terapêutico , Escitalopram/uso terapêutico , Escitalopram/farmacologia , Resultado do Tratamento , Conectoma , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/efeitos dos fármacos
3.
Am J Psychiatry ; 181(10): 910-919, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350625

RESUMO

OBJECTIVE: Conceptual similarities between depressive and negative symptoms complicate biomarker and intervention development. This study employed a data-driven approach to delineate the neural circuitry underlying depressive and negative symptoms in schizophrenia spectrum disorders (SSDs). METHODS: Data from three studies were analyzed (157 participants with SSDs) to assess brain-behavior relationships: two neuroimaging studies and a randomized trial of repetitive transcranial magnetic stimulation (rTMS). Partial least squares correlation (PLSC) was used to investigate associations between resting-state functional connectivity and depressive and negative symptoms. Secondary analyses of rTMS trial data (active, N=37; sham, N=33) were used to assess relationships between PLSC-derived symptom profiles and treatment outcomes. RESULTS: PLSC identified three latent variables (LVs) relating functional brain circuitry with symptom profiles. LV1 related a general depressive symptom factor with positive associations between and within the default mode network (DMN), the frontoparietal network (FPN), and the cingulo-opercular network (CON). LV2 related negative symptoms (no depressive symptoms) via negative associations, especially between the FPN and the CON, but also between the DMN and the FPN and the CON. LV3 related a guilt and early wakening depression factor via negative rather than positive associations with the DMN, FPN, and CON. The secondary visual network had a positive association with general depressive symptoms and negative associations with guilt and negative symptoms. Active (but not sham) rTMS applied bilaterally to the dorsolateral prefrontal cortex (DLPFC) reduced general depressive but not guilt-related or negative symptoms. CONCLUSIONS: The results clearly differentiate the neural circuitry underlying depressive and negative symptoms, and segregated across the two-factor structure of depression in SSDs. These findings support divergent neurobiological pathways of depressive symptoms and negative symptoms in people with SSDs. As treatment options are currently limited, bilateral rTMS to the DLPFC is worth exploring further for general depressive symptoms in people with SSDs.


Assuntos
Depressão , Imageamento por Ressonância Magnética , Esquizofrenia , Estimulação Magnética Transcraniana , Humanos , Masculino , Esquizofrenia/terapia , Esquizofrenia/fisiopatologia , Feminino , Estimulação Magnética Transcraniana/métodos , Adulto , Depressão/terapia , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia
4.
Sci Adv ; 10(37): eado8230, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39259795

RESUMO

The brain integrates information from pain-predictive cues and noxious inputs to construct the pain experience. Although previous studies have identified neural encodings of individual pain components, how they are integrated remains elusive. Here, using a cue-induced pain task, we examined temporal functional magnetic resonance imaging activities within the state space, where axes represent individual voxel activities. By analyzing the features of these activities at the large-scale network level, we demonstrated that overall brain networks preserve both cue and stimulus information in their respective subspaces within the state space. However, only higher-order brain networks, including limbic and default mode networks, could reconstruct the pattern of participants' reported pain by linear summation of subspace activities, providing evidence for the integration of cue and stimulus information. These results suggest a hierarchical organization of the brain for processing pain components and elucidate the mechanism for their integration underlying our pain perception.


Assuntos
Encéfalo , Sinais (Psicologia) , Imageamento por Ressonância Magnética , Dor , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Masculino , Dor/fisiopatologia , Adulto , Feminino , Mapeamento Encefálico , Percepção da Dor/fisiologia , Adulto Jovem , Rede Nervosa/fisiopatologia
5.
Mol Autism ; 15(1): 38, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261969

RESUMO

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. METHODS: We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. RESULTS: Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. LIMITATIONS: Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. CONCLUSIONS: Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Masculino , Adulto Jovem , Adulto , Adolescente , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/fisiopatologia , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Criança , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
6.
BMC Ophthalmol ; 24(1): 411, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300474

RESUMO

BACKGROUND: The pathogenesis of intermittent exotropia (IXT) remains unclear. The study aims to investigate alterations of resting-state networks (RSNs) in IXT adult patients using resting-state functional magnetic resonance imaging (rs-fMRI) data to explore the potential neural mechanisms. METHODS: Twenty-six IXT adult patients and 22 age-, sex-, handedness-, and education-matched healthy controls (HCs) underwent fMRI scanning and ophthalmological examinations. Brain areas with significant functional connectivity (FC) differences between the IXT and HC groups were selected as regions of interest (ROI) and mean z-scores were calculated to control for individual differences. RESULTS: Compared with HCs, IXT patients exhibited altered FC in various brain regions within RSNs involved in binocular fusion, stereopsis, ocular movement, emotional processes and social cognition, including the default mode network (DMN), the dorsal attention network (DAN), the visual network (VN), the sensorimotor network (SMN), the executive control network (ECN), the frontoparietal network (FPN) and the auditory network (AN). The degree of exodeviation was positively correlated with FC value of left middle occipital gyrus (MOG) within the VN. Correspondingly, we found a negative correlation between the degree of exodeviation and the FC value of left angular gyrus (AG) within FPN (P < 0.05). The FNC analysis between different RSNs also provides evidence on visual-motor cortical plasticity. CONCLUSIONS: IXT patients showed widespread changes of brain activity within RSNs related to binocular fusion, stereopsis, oculomotor control, emotional processes, and social cognition. These findings extend our current understanding of the neuropathological mechanisms of IXT. TRIAL REGISTRATION: Beginning date of the trial: 2021-09-01. Date of registration:2021-07-18. Trial registration number: ChiCTR 2,100,048,852. Trial registration site: http://www.chictr.org.cn/index.aspx .


Assuntos
Exotropia , Imageamento por Ressonância Magnética , Humanos , Exotropia/fisiopatologia , Exotropia/diagnóstico por imagem , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Adulto Jovem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Descanso/fisiologia , Pessoa de Meia-Idade
7.
Hum Brain Mapp ; 45(13): e26796, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39254180

RESUMO

Both cortical and cerebellar developmental differences have been implicated in attention-deficit/hyperactivity disorder (ADHD). Recently accumulating neuroimaging studies have highlighted hierarchies as a fundamental principle of brain organization, suggesting the importance of assessing hierarchy abnormalities in ADHD. A novel gradient-based resting-state functional connectivity analysis was applied to investigate the cerebro-cerebellar disturbed hierarchy in children and adolescents with ADHD. We found that the interaction of functional gradient between diagnosis and age was concentrated in default mode network (DMN) and visual network (VN). At the same time, we also found that the opposite gradient changes of DMN and VN caused the compression of the cortical main gradient in ADHD patients, implicating the co-occurrence of both low- (visual processing) and high-order (self-related thought) cognitive dysfunction manifesting in abnormal cerebro-cerebellar organizational hierarchy in ADHD. Our study provides a neurobiological framework to better understand the co-occurrence and interaction of both low-level and high-level functional abnormalities in the cortex and cerebellum in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Cerebelo , Córtex Cerebral , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Adolescente , Criança , Masculino , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Feminino , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia
8.
Addict Biol ; 29(9): e13434, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39256902

RESUMO

Frontloading is an alcohol drinking pattern where intake is skewed towards the onset of access. This study aimed to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female, 31 male) mice that underwent 8 days of binge drinking using drinking-in-the-dark (DID). On Days 1-7 mice received 20% (v/v) alcohol or water for 2 h. Intake was measured in 1-min bins using volumetric sippers. On Day 8 mice were perfused 80 min into the DID session and brains were extracted. Brains were processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For network analyses, Day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a change-point analysis. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (three modules in both frontloaders and non-frontloaders) as compared to water (seven modules). In females, an opposite effect was observed. Alcohol access (nine modules for frontloaders) increased modularity as compared to water (five modules). Further, different brain regions served as hubs in frontloaders as compared to control groups. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females and we identify several brain-wide signatures of frontloading.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Encéfalo , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Animais , Feminino , Masculino , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Camundongos , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Etanol/farmacologia , Fatores Sexuais
9.
Brain Behav ; 14(9): e70022, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295099

RESUMO

BACKGROUND: Prolonged changes to functional network connectivity as a result of a traumatic brain injury (TBI) may relate to long-term cognitive complaints reported by TBI survivors. No interventions have proven to be effective at treating long-term cognitive complaints after TBI but physical activity has been shown to promote cognitive function and modulate functional network connectivity in non-injured adults. Therefore, the objective of this study was to test if physical activity engagement was associated with functional connectivity of the cognitively relevant frontoparietal control network (FPCN) in adults with a TBI history. METHODS: In a case-control study design, resting state function magnetic resonance imaging and physical activity data from a subset of participants (18-81 years old) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study was analyzed. Fifty-seven participants reported a prior head injury with loss of consciousness and 57 age and sex matched controls were selected. Seed-based functional connectivity analyses were performed using seeds in the dorsolateral prefrontal cortex and the inferior parietal lobule, to test for differences in functional connectivity between groups, associations between physical activity and functional connectivity within TBI as well as differential associations between physical activity and functional connectivity between TBI and controls. RESULTS: Seed-based connectivity analyses from the dorsolateral prefrontal cortex showed that those with a history of TBI had decreased positive connectivity between dorsolateral prefrontal cortex and intracalcarine cortex, lingual gyrus, and cerebellum, and increased positive connectivity between dorsolateral prefrontal cortex and cingulate gyrus and frontal pole in the TBI group. Results showed that higher physical activity was positively associated with increased connectivity between the dorsolateral prefrontal cortex and inferior temporal gyrus. Differential associations were observed between groups whereby the strength of the physical activity-functional connectivity association was different between the inferior parietal lobule and inferior temporal gyrus in TBI compared to controls. DISCUSSION: Individuals with a history of TBI show functional connectivity alterations of the FPCN. Moreover, engagement in physical activity is associated with functional network connectivity of the FPCN in those with a TBI. These findings are consistent with the evidence that physical activity affects FPCN connectivity in non-injured adults; however, this effect presents differently in those with a history of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Exercício Físico , Imageamento por Ressonância Magnética , Lobo Parietal , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Idoso , Estudos de Casos e Controles , Adulto Jovem , Exercício Físico/fisiologia , Idoso de 80 Anos ou mais , Adolescente , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem
10.
Hum Brain Mapp ; 45(14): e70030, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39301700

RESUMO

Psychosis implicates changes across a broad range of cognitive functions. These functions are cortically organized in the form of a hierarchy ranging from primary sensorimotor (unimodal) to higher-order association cortices, which involve functions such as language (transmodal). Language has long been documented as undergoing structural changes in psychosis. We hypothesized that these changes as revealed in spontaneous speech patterns may act as readouts of alterations in the configuration of this unimodal-to-transmodal axis of cortical organization in psychosis. Results from 29 patients with first-episodic psychosis (FEP) and 29 controls scanned with 7 T resting-state fMRI confirmed a compression of the cortical hierarchy in FEP, which affected metrics of the hierarchical distance between the sensorimotor and default mode networks, and of the hierarchical organization within the semantic network. These organizational changes were predicted by graphs representing semantic and syntactic associations between meaningful units in speech produced during picture descriptions. These findings unite psychosis, language, and the cortical hierarchy in a single conceptual scheme, which helps to situate language within the neurocognition of psychosis and opens the clinical prospect for mental dysfunction to become computationally measurable in spontaneous speech.


Assuntos
Imageamento por Ressonância Magnética , Transtornos Psicóticos , Fala , Humanos , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/patologia , Masculino , Adulto , Feminino , Fala/fisiologia , Adulto Jovem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia
11.
Adv Exp Med Biol ; 1456: 161-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261429

RESUMO

In this chapter, we explore the historical evolution, current applications, and future directions of Deep Brain Stimulation (DBS) for Treatment-Resistant Depression (TRD). We begin by highlighting the early efforts of neurologists and neurosurgeons who laid the foundations for today's DBS techniques, moving from controversial lobotomies to the precision of stereotactic surgery. We focus on the advent of DBS, emphasizing its emergence as a significant breakthrough for movement disorders and its extension to psychiatric conditions, including TRD. We provide an overview of the neural networks implicated in depression, detailing the rationale for the choice of common DBS targets. We also cover the technical aspects of DBS, from electrode placement to programming and parameter selection. We then critically review the evidence from clinical trials and open-label studies, acknowledging the mixed outcomes and the challenges posed by placebo effects and trial design. Safety and ethical considerations are also discussed. Finally, we explore innovative directions for DBS research, including the potential of closed-loop systems, dual stimulation strategies, and noninvasive alternatives like ultrasound neuromodulation. In the last section, we outline recommendations for future DBS studies, including the use of alternative designs for placebo control, the collection of neural and behavioral recordings, and the application of machine-learning approaches.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Humanos , Ensaios Clínicos como Assunto , Estimulação Encefálica Profunda/métodos , Estimulação Encefálica Profunda/normas , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/terapia , Rede Nervosa/fisiopatologia , Efeito Placebo , Aprendizado de Máquina
12.
PLoS One ; 19(9): e0310165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39283839

RESUMO

Analyzing functional brain activity through functional magnetic resonance imaging (fMRI) is commonly done using tools from graph theory for the analysis of the correlation matrices. A drawback of these methods is that the networks must be restricted to values of the weights of the edges within certain thresholds and there is no consensus about the best choice of such thresholds. Topological data analysis (TDA) is a recently-developed tool in algebraic topology which allows us to analyze networks through combinatorial spaces obtained from them, with the advantage that all the possible thresholds can be considered at once. In this paper we applied TDA, in particular persistent homology, to study correlation matrices from rs-fMRI, and through statistical analysis, we detected significant differences between the topological structures of adolescents with inhaled substance abuse disorder (ISAD) and healthy controls. We interpreted the topological differences as indicative of a loss of robustness in the functional brain networks of the ISAD population.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Adolescente , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Abuso de Inalantes/diagnóstico por imagem , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Estudos de Casos e Controles , Mapeamento Encefálico/métodos
13.
Psychiatry Res Neuroimaging ; 344: 111880, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217670

RESUMO

BACKGROUND: Major Depressive Disorder (MDD), as a chronic mental disorder, causes changes in mood, thoughts, and behavior. The pathophysiology of the disorder and its treatment are still unknown. One of the most notable changes observed in patients with MDD through fMRI is abnormal functional brain connectivity. METHODS: Preprocessed data from 60 MDD patients and 60 normal controls (NCs) were selected, which has been performed using the DPARSF toolbox. The whole-brain functional networks and topologies were extracted using graph theory-based methods. A two-sample, two-tailed t-test was used to compare the topological features of functional brain networks between the MDD and NCs groups using the DPABI-Net/Statistical Analysis toolbox. RESULTS: The obtained results showed a decrease in both global and local efficiency in MDD patients compared to NCs, and specifically, MDD patients showed significantly higher path length values. Acceptable p-values were obtained with a small sample size and less computational volume compared to the other studies on large datasets. At the node level, MDD patients showed decreased and relatively decreased node degrees in the sensorimotor network (SMN) and the dorsal attention network (DAN), respectively, as well as decreased node efficiency in the SMN, default mode network (DMN), and DAN. Also, MDD patients showed slightly decreased node efficiency in the visual networks (VN) and the ventral attention network (VAN), which were reported after FDR correction with Q < 0.05. LIMITATIONS: All participants were Chinese. CONCLUSIONS: Collectively, increased path length, decreased global and local efficiency, and also decreased nodal degree and efficiency in the SMN, DAN, DAN, VN, and VAN were found in patients compared to NCs.


Assuntos
Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Pessoa de Meia-Idade , Conectoma/métodos , Adulto Jovem
14.
Cereb Cortex ; 34(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270674

RESUMO

Brain network hubs are highly connected brain regions serving as important relay stations for information integration. Recent studies have linked mental disorders to impaired hub function. Provincial hubs mainly integrate information within their own brain network, while connector hubs share information between different brain networks. This study used a novel time-varying analysis to investigate whether hubs aberrantly follow the trajectory of other brain networks than their own. The aim was to characterize brain hub functioning in clinically remitted bipolar patients. We analyzed resting-state functional magnetic resonance imaging data from 96 euthymic individuals with bipolar disorder and 61 healthy control individuals. We characterized different hub qualities within the somatomotor network. We found that the somatomotor network comprised mainly provincial hubs in healthy controls. Conversely, in bipolar disorder patients, hubs in the primary somatosensory cortex displayed weaker provincial and stronger connector hub function. Furthermore, hubs in bipolar disorder showed weaker allegiances with their own brain network and followed the trajectories of the limbic, salience, dorsal attention, and frontoparietal network. We suggest that these hub aberrancies contribute to previously shown functional connectivity alterations in bipolar disorder and may thus constitute the neural substrate to persistently impaired sensory integration despite clinical remission.


Assuntos
Transtorno Bipolar , Imageamento por Ressonância Magnética , Rede Nervosa , Córtex Somatossensorial , Humanos , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico por imagem , Masculino , Feminino , Adulto , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/fisiologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Conectoma , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem
15.
J Integr Neurosci ; 23(9): 174, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39344224

RESUMO

BACKGROUND: Sleep deprivation (SD) can impair an individual's alertness, which is the basis of attention and the mechanism behind continuous information processing. However, research concerning the effects of total sleep deprivation (TSD) on alertness networks is inadequate. In this study, we investigate the cognitive neural mechanism of alertness processing after TSD. METHODS: Twenty-four college students volunteered to participate in the study. The resting-state electroencephalogram (EEG) data were collected under two conditions (rested wakefulness [RW], and TSD). We employed isolated effective coherence (iCoh) analysis and functional independent component analysis (fICA) to explore the effects of TSD on participants' alertness network. RESULTS: This study found the existence of two types of effective connectivity after TSD, as demonstrated by iCoh: from the left cuneus to the right middle frontal gyrus in the ß3 and γ bands, and from the left angular gyrus to the left insula in the δ, θ, α, ß1, ß3, and γ bands. Furthermore, Pearson correlation analysis showed that increased effective connectivity between all the bands had a positive correlation with increases in the response time in the psychomotor vigilance task (PVT). Finally, fICA revealed that the neural oscillations of the cuneus in the α2 bands increased, and of the angular gyrus in the α and ß1 bands decreased in TSD. CONCLUSIONS: TSD impairs the alertness function among individuals. Increased effective connectivity from the cuneus to the middle frontal gyrus may represent overloads on the alertness network, resulting in participants strengthening top-down control of the attention system. Moreover, enhanced effective connectivity from the angular gyrus to the insula may indicate a special perception strategy in which individuals focus on salient and crucial environmental information while ignoring inessential stimuli to reduce the heavy burden on the alertness network. CLINICAL TRIAL REGISTRATION: No: ChiCTR2400088448. Registered 19 August 2024, https://www.chictr.org.cn.


Assuntos
Atenção , Córtex Pré-Frontal , Privação do Sono , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Atenção/fisiologia , Ondas Encefálicas/fisiologia , Conectoma , Eletroencefalografia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Privação do Sono/fisiopatologia
16.
Hum Brain Mapp ; 45(14): e70033, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39319686

RESUMO

Temporal lobe epilepsy (TLE) frequently involves an intricate, extensive epileptic frontal-temporal network. This study aimed to investigate the interactions between temporal and frontal regions and the dynamic patterns of the frontal-temporal network in TLE patients with different disease durations. The magnetoencephalography data of 36 postoperative seizure-free patients with long-term follow-up of at least 1 year, and 21 age- and sex-matched healthy subjects were included in this study. Patients were initially divided into LONG-TERM (n = 18, DURATION >10 years) and SHORT-TERM (n = 18, DURATION ≤10 years) groups based on 10-year disease duration. For reliability, supplementary analyses were conducted with alternative cutoffs, creating three groups: 0 < DURATION ≤7 years (n = 11), 7 < DURATION ≤14 years (n = 11), and DURATION >14 years (n = 14). This study examined the intraregional phase-amplitude coupling (PAC) between theta phase and alpha amplitude across the whole brain. The interregional directed phase transfer entropy (dPTE) between frontal and temporal regions in the alpha and theta bands, and the interregional cross-frequency directionality (CFD) between temporal and frontal regions from the theta phase to the alpha amplitude were further computed and compared among groups. Partial correlation analysis was conducted to investigate correlations between intraregional PAC, interregional dPTE connectivity, interregional CFD, and disease duration. Whole-brain intraregional PAC analyses revealed enhanced theta phase-alpha amplitude coupling within the ipsilateral temporal and frontal regions in TLE patients, and the ipsilateral temporal PAC was positively correlated with disease duration (r = 0.38, p <.05). Interregional dPTE analyses demonstrated a gradual increase in frontal-to-temporal connectivity within the alpha band, while the direction of theta-band connectivity reversed from frontal-to-temporal to temporal-to-frontal as the disease duration increased. Interregional CFD analyses revealed that the inhibitory effect of frontal regions on temporal regions gradually increased with prolonged disease duration (r = -0.36, p <.05). This study clarified the intrinsic reciprocal connectivity between temporal and frontal regions with TLE duration. We propose a dynamically reorganized triple-stage network that transitions from balanced networks to constrained networks and further develops into imbalanced networks as the disease duration increases.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Lobo Frontal , Magnetoencefalografia , Rede Nervosa , Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Adulto , Adulto Jovem , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Pessoa de Meia-Idade , Ritmo Teta/fisiologia , Ritmo alfa/fisiologia , Adolescente
17.
J Headache Pain ; 25(1): 159, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333887

RESUMO

BACKGROUND: Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and emotional regulation, rendering it a potential nexus in the comorbidity of migraine and insomnia. Disruptions in the LC-noradrenergic system have been hypothesized to contribute to the comorbidities of migraine and insomnia, although neuroimaging evidence in humans remains scarce. In this study, we aimed to investigate the intrinsic functional connectivity (FC) network of the LC in patients with comorbid migraine and subjective chronic insomnia and patients with migraine with no insomnia (MnI) using resting-state functional magnetic resonance imaging (rs-fMRI) and seed-based FC analyses. METHODS: In this cross-sectional study, 30 patients with comorbid migraine and chronic insomnia (MI), 30 patients with MnI, and 30 healthy controls (HCs) were enrolled. Participants underwent neuropsychological testing and rs-fMRI. The LC-FC network was constructed using seed-based voxel-wise FC analysis. To identify group differences in LC-FC networks, voxel-wise covariance analysis was conducted with sex and age as covariates. Subsequently, a partial correlation analysis was conducted to probe the clinical relevance of aberrant LC-FC in patients with MI and MnI. RESULTS: Except for the insomnia score, no other significant difference was detected in demographic characteristics and behavioral performance between the MI and MnI groups. Compared with HCs, patients with MI exhibited altered LC-FC in several brain regions, including the dorsomedial prefrontal cortex (DMPFC), anterior cerebellum, dorsolateral prefrontal cortex (DLPFC), thalamus, and parahippocampal gyrus (PHG). Lower FC between the LC and DLPFC was associated with greater insomnia severity, whereas higher FC between the LC and DMPFC was linked to longer migraine attack duration in the MI group. CONCLUSION: Our findings reveal the presence of aberrant LC-FC networks in patients with MI, providing neuroimaging evidence of the interplay between these conditions. The identified LC-FC alterations may serve as potential targets for therapeutic interventions and highlight the importance of considering the LC-noradrenergic system in the management of MI.


Assuntos
Comorbidade , Locus Cerúleo , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiopatologia , Feminino , Masculino , Adulto , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/epidemiologia , Estudos Transversais , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Conectoma
18.
BMC Neurosci ; 25(1): 46, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333843

RESUMO

BACKGROUND: Patients with bipolar disorder (BD) and major depressive disorder (MDD) exhibit depressive episodes with similar symptoms despite having different and poorly understood underlying neurobiology, often leading to misdiagnosis and improper treatment. This exploratory study examined whole-brain functional connectivity (FC) using FC multivariate pattern analysis (fc-MVPA) to identify the FC patterns with the greatest ability to distinguish between currently depressed patients with BD type I (BD I) and those with MDD. METHODOLOGY: In a cross-sectional design, 41 BD I, 40 MDD patients and 63 control participants completed resting state functional magnetic resonance imaging scans. Data-driven fc-MVPA, as implemented in the CONN toolbox, was used to identify clusters with differential FC patterns between BD patients and MDD patients. The identified cluster was used as a seed in a post hoc seed-based analysis (SBA) to reveal associated connectivity patterns, followed by a secondary ROI-to-ROI analysis to characterize differences in connectivity between these patterns among BD I patients, MDD patients and controls. RESULTS: FC-MVPA identified one cluster located in the right frontal pole (RFP). The subsequent SBA revealed greater FC between the RFP and posterior cingulate cortex (PCC) and between the RFP and the left inferior/middle temporal gyrus (LI/MTG) and lower FC between the RFP and the left precentral gyrus (LPCG), left lingual gyrus/occipital cortex (LLG/OCC) and right occipital cortex (ROCC) in MDD patients than in BD patients. Compared with the controls, ROI-to-ROI analysis revealed lower FC between the RFP and the PCC and greater FC between the RFP and the LPCG, LLG/OCC and ROCC in BD patients; in MDD patients, the analysis revealed lower FC between the RFP and the LLG/OCC and ROCC and greater FC between the RFP and the LI/MTG. CONCLUSIONS: Differences in the RFP FC patterns between currently depressed patients with BD and those with MDD suggest potential neuroimaging markers that should be further examined. Specifically, BD patients exhibit increased FC between the RFP and the motor and visual networks, which is associated with psychomotor symptoms and heightened compensatory frontoparietal FC to counter distractibility. In contrast, MDD patients exhibit increased FC between the RFP and the default mode network, corresponding to sustained self-focus and rumination.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Humanos , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico por imagem , Feminino , Masculino , Adulto , Imageamento por Ressonância Magnética/métodos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Estudos Transversais , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Análise Multivariada , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico/métodos
19.
J Integr Neurosci ; 23(9): 176, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39344234

RESUMO

BACKGROUND: Stroke remains a leading cause of disability globally and movement impairment is the most common complication in stroke patients. Resting-state electroencephalography (EEG) microstate analysis is a non-invasive approach of whole-brain imaging based on the spatiotemporal pattern of the entire cerebral cortex. The present study aims to investigate microstate alterations in stroke patients. METHODS: Resting-state EEG data collected from 24 stroke patients and 19 healthy controls matched by age and gender were subjected to microstate analysis. For four classic microstates labeled as class A, B, C and D, their temporal characteristics (duration, occurrence and coverage) and transition probabilities (TP) were extracted and compared between the two groups. Furthermore, we explored their correlations with clinical outcomes including the Fugl-Meyer assessment (FMA) and the action research arm test (ARAT) scores in stroke patients. Finally, we analyzed the relationship between the temporal characteristics and spectral power in frequency bands. False discovery rate (FDR) method was applied for correction of multiple comparisons. RESULTS: Microstate analysis revealed that the stroke group had lower occurrence of microstate A which was regarded as the sensorimotor network (SMN) compared with the control group (p = 0.003, adjusted p = 0.036, t = -2.959). The TP from microstate A to microstate D had a significant positive correlation with the Fugl-Meyer assessment of lower extremity (FMA-LE) scores (p = 0.049, r = 0.406), but this finding did not survive FDR adjustment (adjusted p = 0.432). Additionally, the occurrence and the coverage of microstate B were negatively correlated with the power of delta band in the stroke group, which did not pass adjustment (p = 0.033, adjusted p = 0.790, r = -0.436; p = 0.026, adjusted p = 0.790, r = -0.454, respectively). CONCLUSIONS: Our results confirm the abnormal temporal dynamics of brain activity in stroke patients. The study provides further electrophysiological evidence for understanding the mechanism of brain motor functional reorganization after stroke.


Assuntos
Eletroencefalografia , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Eletroencefalografia/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Idoso , Adulto , Descanso/fisiologia , Córtex Cerebral/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
20.
CNS Neurosci Ther ; 30(9): e70037, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39268632

RESUMO

Vestibular compensation is the natural process of recovery that occurs with acute peripheral vestibular lesion. Here, we summarize the current understanding of the mechanisms underlying vestibular compensation, focusing on the role of the medial vestibular nucleus (MVN), the central hub of the vestibular system, and its associated neural networks. The disruption of neural activity balance between the bilateral MVNs underlies the vestibular symptoms after unilateral vestibular damage, and this balance disruption can be partially reversed by the mutual inhibitory projections between the bilateral MVNs, and their top-down regulation by other brain regions via different neurotransmitters. However, the detailed mechanism of how MVN is involved in vestibular compensation and regulated remains largely unknown. A deeper understanding of the vestibular neural network and the neurotransmitter systems involved in vestibular compensation holds promise for improving treatment outcomes and developing more effective interventions for vestibular disorders.


Assuntos
Rede Nervosa , Doenças Vestibulares , Núcleos Vestibulares , Humanos , Animais , Núcleos Vestibulares/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/fisiopatologia , Doenças Vestibulares/fisiopatologia , Doenças Vestibulares/terapia , Vestíbulo do Labirinto/fisiologia , Sistema Vestibular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA