Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.634
Filtrar
1.
Mol Biol Rep ; 51(1): 966, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240462

RESUMO

In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Cristalografia por Raios X/métodos , Conformação Proteica , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Modelos Moleculares , Ligação Proteica , Transdução de Sinais , Receptores de Glucagon/metabolismo , Receptores de Glucagon/genética , Receptores de Glucagon/química
2.
J Med Chem ; 67(17): 14820-14839, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39140772

RESUMO

Various small molecule GLP1R agonists have been developed and tested for treating type 2 diabetes (T2DM) and obesity. However, many of these new compounds have drawbacks, such as potential hERG inhibition, lower activity compared to natural GLP-1, limited oral bioavailability in cynomolgus monkeys, and short duration of action. Recently, a new category of 3-phenyloxetane derivative GLP1R agonists with enhanced hERG inhibition has been discovered. Using an AIDD/CADD method, compound 14 (DD202-114) was identified as a potent and selective GLP1R agonist, which was chosen as a preclinical candidate (PCC). Compound 14 demonstrates full agonistic efficacy in promoting cAMP accumulation and possesses favorable drug-like characteristics compared to the clinical drug candidate Danuglipron. Additionally, in hGLP-1R knock-in mice, compound 14 displayed a sustained pharmacological effect, effectively reducing blood glucose levels and food intake. These findings suggest that compound 14 holds promise as a future treatment option for T2DM and obesity, offering improved properties.


Assuntos
Desenho de Fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Humanos , Camundongos , Relação Estrutura-Atividade , Masculino , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo
3.
PLoS One ; 19(8): e0302565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39196987

RESUMO

Obesity is a growing concern. 42.3% of people in the U.S were considered obese between 2017-2018. Much is still unknown about the genetic components that contribute to weight gain. In humans, the hormone glucagon is a major contributor to the body's energy regulation as it signals for the breakdown of lipids. Treatments targeting the glucagon pathway have helped patients with both weight loss and appetite suppression. Understanding the genetic modifiers of glucagon signaling and its downstream pathways could enable the development of a wider variety of effective therapeutics. In this study, we blocked the glucagon pathway in Drosophila melanogaster by reducing the expression of the fly ortholog of the glucagon receptor (AKHR). We then crossed our model to the Drosophila Genetic Reference Panel (DGRP) and looked for natural variation in fat content. We used variation in larval density to identify candidate modifier genes through a genome-wide association study. We then tested these modifier genes by increasing or decreasing their expression in the AKHR model. We screened these candidates initially with the same density assay used in the original study to narrow down to four candidate genes that substantially impacted the density of the larvae: THADA, AmyD, GluRIIC, and CG9826. We further characterized these candidates using biochemical assays to analyze stored metabolites such as triglycerides, glucose, glycogen, and protein under control, high sugar, and high fat conditions to see if the larvae are resistant to environmental changes. Our results indicate consistency between the results of the density assay and direct measurement of metabolite levels. In particular, THADA and AmyD are highlighted as interesting genes for additional study. We hope to improve our understanding of the glucagon signaling pathway, obesity, and lipid metabolism. We also aim to provide candidate genes that can be regarded as future therapeutic targets.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Glucagon , Larva , Receptores de Glucagon , Transdução de Sinais , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Glucagon/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Estudo de Associação Genômica Ampla , Masculino , Obesidade/genética , Obesidade/metabolismo , Feminino
4.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125959

RESUMO

Glucagon receptor (GCGR) is a class B1 G-protein-coupled receptor that plays a crucial role in maintaining human blood glucose homeostasis and is a significant target for the treatment of type 2 diabetes mellitus (T2DM). Currently, six small molecules (Bay 27-9955, MK-0893, MK-3577, LY2409021, PF-06291874, and LGD-6972) have been tested or are undergoing clinical trials, but only the binding site of MK-0893 has been resolved. To predict binding sites for other small molecules, we utilized both the crystal structure of the GCGR and MK-0893 complex and dynamic conformations. We docked five small molecules and selected the best conformation based on binding mode, docking score, and binding free energy. We performed MD simulations to verify the binding mode of the selected small molecules. Moreover, when selecting conformations, results of competitive binding were referred to. MD simulation indicated that Bay 27-9955 exhibits moderate binding stability in Pocket 3. MK-3577, LY2409021, and PF-06291874 exhibited highly stable binding to Pocket 2, consistent with experimental results. However, LY2409021 may also bind to Pocket 5. Additionally, LGD-6972 exhibited relatively stable binding in Pocket 5. We also conducted structural modifications of LGD-6972 based on the results of MD simulations and predicted its analogues' bioavailability, providing a reference for the study of GCGR small molecules.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Receptores de Glucagon , Sítios de Ligação , Humanos , Cristalografia por Raios X , Receptores de Glucagon/química , Receptores de Glucagon/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Ligantes , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
6.
Circ Res ; 135(5): 614-628, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011638

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD: We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS: In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS: These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.


Assuntos
Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Volume Sistólico , Animais , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Volume Sistólico/efeitos dos fármacos , Camundongos , Masculino , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Receptores de Glucagon/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Obesos , Função Ventricular Esquerda/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/complicações , Modelos Animais de Doenças , Transdução de Sinais
7.
Domest Anim Endocrinol ; 89: 106874, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018655

RESUMO

The role of glucagon disturbances in diabetes mellitus is increasingly recognized and, hence, glucagon antagonism might aid in treatment of hyperglycemia and other metabolic disturbances. The aim of this study was to assess the pharmacokinetics of the glucagon receptor antagonist MK-3577 and its effect on plasma glucose, insulin, and glucagon concentrations in healthy cats. In a cross-over placebo-controlled study, 5 purpose-bred cats were treated with either Placebo, MK-3577 (1 mg/kg), or MK-3577 (3 mg/kg). Glucose, insulin and glucagon concentrations were measured at 0, 15, 225, 240 min post-treatment administration. Glucagon (20 mcg/kg, IM) was administered at 240 min and glucose and insulin were measured at 255, 265, 275, 285 and 300 min. Plasma MK-3577 concentrations peaked at 4.2 and 3.2 hours after 1 and 3 mg/kg dosing with a half-life of 14.8h and 15.5h respectively. Baseline glucose, insulin and glucagon concentrations did not differ significantly between treatment groups. At a dose of 3 mg/kg, MK-3577 blunted the glucagon-stimulated rise of glucose (p=0.0089) and insulin (p=0.02). Similar trends were observed with MK-3577 at the 1 mg/kg dose but the effect was smaller, and not significant. In conclusion, the GRA MK-3577 has a pharmacokinetic profile suitable for diminishing the glucagon-induced rise of glucose and insulin in healthy cats.


Assuntos
Glicemia , Estudos Cross-Over , Glucagon , Insulina , Sobrepeso , Animais , Gatos , Glucagon/sangue , Insulina/sangue , Masculino , Feminino , Sobrepeso/veterinária , Doenças do Gato/tratamento farmacológico , Receptores de Glucagon/antagonistas & inibidores , Quinolizinas
8.
Biomolecules ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062586

RESUMO

Glucagon-like peptide-1 (GLP-1)-based drugs have been approved by the United States Food and Drug Administration (FDA) and are widely used to treat type 2 diabetes mellitus (T2DM) and obesity. More recent developments of unimolecular peptides targeting multiple incretin-related receptors ("multi-agonists"), including the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon (Gcg) receptor (GcgR), have emerged with the aim of enhancing drug benefits. In this study, we utilized human and mouse microglial cell lines, HMC3 and IMG, respectively, together with the human neuroblastoma SH-SY5Y cell line as cellular models of neurodegeneration. Using these cell lines, we studied the neuroprotective and anti-inflammatory capacity of several multi-agonists in comparison with a single GLP-1 receptor (GLP-1R) agonist, exendin-4. Our data demonstrate that the two selected GLP-1R/GIPR dual agonists and a GLP-1R/GIPR/GcgR triple agonist not only have neurotrophic and neuroprotective effects but also have anti-neuroinflammatory properties, as indicated by the decreased microglial cyclooxygenase 2 (COX2) expression, nitrite production, and pro-inflammatory cytokine release. In addition, our results indicate that these multi-agonists have the potential to outperform commercially available single GLP-1R agonists in neurodegenerative disease treatment.


Assuntos
Anti-Inflamatórios , Receptor do Peptídeo Semelhante ao Glucagon 1 , Incretinas , Fármacos Neuroprotetores , Humanos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Incretinas/farmacologia , Camundongos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Linhagem Celular , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Exenatida/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Linhagem Celular Tumoral , Peptídeos/farmacologia , Peptídeos/química , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas
9.
Adv Sci (Weinh) ; 11(29): e2400819, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837628

RESUMO

Glucagon receptor (GCGR) agonism offers potentially greater effects on the mitigation of hepatic steatosis. However, its underlying mechanism is not fully understood. Here, it screened tetraspanin CD9 might medicate hepatic effects of GCGR agonist. CD9 is decreased in the fatty livers of patients and upregulated upon GCGR activation. Deficiency of CD9 in the liver exacerbated diet-induced hepatic steatosis via complement factor D (CFD) regulated fatty acid metabolism. Specifically, CD9 modulated hepatic fatty acid synthesis and oxidation genes through regulating CFD expression via the ubiquitination-proteasomal degradation of FLI1. In addition, CD9 influenced body weight by modulating lipogenesis and thermogenesis of adipose tissue through CFD. Moreover, CD9 reinforcement in the liver alleviated hepatic steatosis, and blockage of CD9 abolished the remission of hepatic steatosis induced by cotadutide treatment. Thus, CD9 medicates the hepatic beneficial effects of GCGR signaling, and may server as a promising therapeutic target for hepatic steatosis.


Assuntos
Fígado Gorduroso , Tetraspanina 29 , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Animais , Camundongos , Humanos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Receptores de Glucagon/genética , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Diabetes Obes Metab ; 26(9): 3501-3512, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38853300

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucagon , Hipoglicemiantes , Obesidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glucagon/metabolismo , Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Receptores de Glucagon/agonistas , Redução de Peso/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Hemoglobinas Glicadas/efeitos dos fármacos , Hemoglobinas Glicadas/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Masculino
11.
Biomed Pharmacother ; 176: 116888, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861859

RESUMO

OBJECTIVES: Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS: Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS: Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS: Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.


Assuntos
Fígado Gorduroso , Peptídeo 1 Semelhante ao Glucagon , Camundongos Endogâmicos C57BL , Obesidade , Receptores de Glucagon , Redução de Peso , Animais , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Redução de Peso/efeitos dos fármacos , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Masculino , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Camundongos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Resistência à Insulina , Peptídeos Semelhantes ao Glucagon/farmacologia
12.
Nat Med ; 30(7): 2037-2048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858523

RESUMO

Retatrutide is a novel triple agonist of the glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 and glucagon receptors. A 48-week phase 2 obesity study demonstrated weight reductions of 22.8% and 24.2% with retatrutide 8 and 12 mg, respectively. The primary objective of this substudy was to assess mean relative change from baseline in liver fat (LF) at 24 weeks in participants from that study with metabolic dysfunction-associated steatotic liver disease and ≥10% of LF. Here, in this randomized, double-blind, placebo-controlled trial, participants (n = 98) were randomly assigned to 48 weeks of once-weekly subcutaneous retatrutide (1, 4, 8 or 12 mg dose) or placebo. The mean relative change from baseline in LF at 24 weeks was -42.9% (1 mg), -57.0% (4 mg), -81.4% (8 mg), -82.4% (12 mg) and +0.3% (placebo) (all P < 0.001 versus placebo). At 24 weeks, normal LF (<5%) was achieved by 27% (1 mg), 52% (4 mg), 79% (8 mg), 86% (12 mg) and 0% (placebo) of participants. LF reductions were significantly related to changes in body weight, abdominal fat and metabolic measures associated with improved insulin sensitivity and lipid metabolism. The ClinicalTrials.gov registration is NCT04881760 .


Assuntos
Fígado Gorduroso , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Fígado Gorduroso/tratamento farmacológico , Adulto , Método Duplo-Cego , Receptores de Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Fígado/efeitos dos fármacos , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/complicações , Idoso , Ácidos Graxos , Peptídeos
13.
N Engl J Med ; 391(4): 311-319, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38847460

RESUMO

BACKGROUND: Dual agonism of glucagon receptor and glucagon-like peptide-1 (GLP-1) receptor may be more effective than GLP-1 receptor agonism alone for treating metabolic dysfunction-associated steatohepatitis (MASH). The efficacy and safety of survodutide (a dual agonist of glucagon receptor and GLP-1 receptor) in persons with MASH and liver fibrosis are unclear. METHODS: In this 48-week, phase 2 trial, we randomly assigned adults with biopsy-confirmed MASH and fibrosis stage F1 through F3 in a 1:1:1:1 ratio to receive once-weekly subcutaneous injections of survodutide at a dose of 2.4, 4.8, or 6.0 mg or placebo. The trial had two phases: a 24-week rapid-dose-escalation phase, followed by a 24-week maintenance phase. The primary end point was histologic improvement (reduction) in MASH with no worsening of fibrosis. Secondary end points included a decrease in liver fat content by at least 30% and biopsy-assessed improvement (reduction) in fibrosis by at least one stage. RESULTS: A total of 293 randomly assigned participants received at least one dose of survodutide or placebo. Improvement in MASH with no worsening of fibrosis occurred in 47% of the participants in the survodutide 2.4-mg group, 62% of those in the 4.8-mg group, and 43% of those in the 6.0-mg group, as compared with 14% of those in the placebo group (P<0.001 for the quadratic dose-response curve as best-fitting model). A decrease in liver fat content by at least 30% occurred in 63% of the participants in the survodutide 2.4-mg group, 67% of those in the 4.8-mg group, 57% of those in the 6.0-mg group, and 14% of those in the placebo group; improvement in fibrosis by at least one stage occurred in 34%, 36%, 34%, and 22%, respectively. Adverse events that were more frequent with survodutide than with placebo included nausea (66% vs. 23%), diarrhea (49% vs. 23%), and vomiting (41% vs. 4%); serious adverse events occurred in 8% with survodutide and 7% with placebo. CONCLUSIONS: Survodutide was superior to placebo with respect to improvement in MASH without worsening of fibrosis, warranting further investigation in phase 3 trials. (Funded by Boehringer Ingelheim; 1404-0043 ClinicalTrials.gov number, NCT04771273; EudraCT number, 2020-002723-11.).


Assuntos
Fígado Gorduroso , Receptor do Peptídeo Semelhante ao Glucagon 1 , Cirrose Hepática , Receptores de Glucagon , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Relação Dose-Resposta a Droga , Método Duplo-Cego , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Injeções Subcutâneas/efeitos adversos , Fígado/patologia , Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Receptores de Glucagon/agonistas
14.
Endocrine ; 86(1): 15-27, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38740695

RESUMO

PURPOSE: This study aimed to investigate the effects of randomized, placebo-controlled trials involving the GLP-1 and glucagon receptor dual agonists, mazdutide, and cotadutide, on glycaemic control and body weight changes in individuals with type 2 diabetes mellitus (T2DM), obesity, or both. METHODS: We conducted searches in Medline, PubMed, Scopus, the Cochrane database, and Web of Science up to March 5, 2024. The primary outcomes assessed were changes in HbA1c level and percentage changes in body weight from baseline (CFB). RESULTS: Eleven studies and four unpublished trials were included. The pooled meta-analysis revealed a significant reduction in HbA1c (MD = -0.63%; 95% CI = [-0.82, -0.44]; P < 0.00001), fasting plasma glucose (MD = -1.71 mmol/L; 95% CI = [-2.31, -1.10]; P < 0.00001), and percentage change in body weight (MD = -4.16%; 95% CI = [-5.41, -2.92]; P < 0.00001). Safety analysis revealed no significant change in serious adverse events (OR = 1.03; 95% CI = [0.61, 1.75]; P = 0.91), but there were significantly higher odds of treatment-emergent adverse events (OR = 2.52; 95% CI = [1.92, 3.30]; P < 0.00001) and vomiting (OR = 6.05; 95% CI = [3.52, 10.40]; P < 0.00001). CONCLUSION: These results suggest that mazdutide and cotadutide are effective for glycaemic control and weight reduction in individuals with T2DM, obesity, or both.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Obesidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Humanos , Obesidade/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Resultado do Tratamento , Receptores de Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glicemia/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeos
15.
Nat Chem ; 16(9): 1436-1444, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38755312

RESUMO

Several peptide dual agonists of the human glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R) are in development for the treatment of type 2 diabetes, obesity and their associated complications. Candidates must have high potency at both receptors, but it is unclear whether the limited experimental data available can be used to train models that accurately predict the activity at both receptors of new peptide variants. Here we use peptide sequence data labelled with in vitro potency at human GCGR and GLP-1R to train several models, including a deep multi-task neural-network model using multiple loss optimization. Model-guided sequence optimization was used to design three groups of peptide variants, with distinct ranges of predicted dual activity. We found that three of the model-designed sequences are potent dual agonists with superior biological activity. With our designs we were able to achieve up to sevenfold potency improvement at both receptors simultaneously compared to the best dual-agonist in the training set.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Aprendizado de Máquina , Receptores de Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Desenho de Fármacos , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química
16.
Diabetologia ; 67(8): 1602-1615, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705923

RESUMO

AIMS/HYPOTHESES: Glucagon and glucagon-like peptide-1 (GLP-1) are derived from the same precursor; proglucagon, and dual agonists of their receptors are currently being explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated levels of endogenous glucagon (hyperglucagonaemia) have been linked with hyperglycaemia in individuals with type 2 diabetes but are also observed in individuals with obesity and MASLD. GLP-1 levels have been reported to be largely unaffected or even reduced in similar conditions. We investigated potential determinants of plasma proglucagon and associations of glucagon receptor signalling with metabolic diseases based on data from the UK Biobank. METHODS: We used exome sequencing data from the UK Biobank for ~410,000 white participants to identify glucagon receptor variants and grouped them based on their known or predicted signalling. Data on plasma levels of proglucagon estimated using Olink technology were available for a subset of the cohort (~40,000). We determined associations of glucagon receptor variants and proglucagon with BMI, type 2 diabetes and liver fat (quantified by liver MRI) and performed survival analyses to investigate if elevated proglucagon predicts type 2 diabetes development. RESULTS: Obesity, MASLD and type 2 diabetes were associated with elevated plasma levels of proglucagon independently of each other. Baseline proglucagon levels were associated with the risk of type 2 diabetes development over a 14 year follow-up period (HR 1.13; 95% CI 1.09, 1.17; n=1562; p=1.3×10-12). This association was of the same magnitude across strata of BMI. Carriers of glucagon receptor variants with reduced cAMP signalling had elevated levels of proglucagon (ß 0.847; 95% CI 0.04, 1.66; n=17; p=0.04), and carriers of variants with a predicted frameshift mutation had higher levels of liver fat compared with the wild-type reference group (ß 0.504; 95% CI 0.03, 0.98; n=11; p=0.04). CONCLUSIONS/INTERPRETATION: Our findings support the suggestion that glucagon receptor signalling is involved in MASLD, that plasma levels of proglucagon are linked to the risk of type 2 diabetes development, and that proglucagon levels are influenced by genetic variation in the glucagon receptor, obesity, type 2 diabetes and MASLD. Determining the molecular signalling pathways downstream of glucagon receptor activation may guide the development of biased GLP-1/glucagon co-agonist with improved metabolic benefits. DATA AVAILABILITY: All coding is available through https://github.com/nicwin98/UK-Biobank-GCG.


Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2 , Obesidade , Proglucagon , Receptores de Glucagon , Transdução de Sinais , Humanos , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Reino Unido , Feminino , Proglucagon/metabolismo , Proglucagon/genética , Masculino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Pessoa de Meia-Idade , Obesidade/sangue , Idoso , Adulto , Índice de Massa Corporal , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Biobanco do Reino Unido
17.
Trends Endocrinol Metab ; 35(7): 566-568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763780

RESUMO

Unimolecular co-agonists at the GLP-1/GIP receptors have recently achieved remarkable anti-obesogenic feats; yet, in a recent Phase 1 clinical trial, Véniant and colleagues report astounding body-weight loss, and an appreciable safety profile, in participants with obesity using the GLP-1R agonist/GIPR antagonist AMG 133.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Obesidade , Receptores dos Hormônios Gastrointestinais , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Receptores dos Hormônios Gastrointestinais/metabolismo , Obesidade/metabolismo , Peptídeos/farmacologia , Animais , Redução de Peso/efeitos dos fármacos , Receptores de Glucagon/metabolismo , Receptores de Glucagon/antagonistas & inibidores
18.
Diabetes Obes Metab ; 26(7): 2634-2644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38562018

RESUMO

AIMS: To establish which components of energy balance mediate the clinically significant weight loss demonstrated with use of cotadutide, a glucagon-like peptide-1 (GLP-1)/glucagon receptor dual agonist, in early-phase studies. MATERIALS AND METHODS: We conducted a phase 2a, single-centre, randomized, placebo-controlled trial in overweight and obese adults with type 2 diabetes. Following a 16-day single-blind placebo run-in, participants were randomized 2:1 to double-blind 42-day subcutaneous treatment with cotadutide (100-300 µg daily) or placebo. The primary outcome was percentage weight change. Secondary outcomes included change in energy intake (EI) and energy expenditure (EE). RESULTS: A total of 12 participants (63%) in the cotadutide group and seven (78%) in the placebo group completed the study. The mean (90% confidence interval [CI]) weight change was -4.0% (-4.9%, -3.1%) and -1.4% (-2.7%, -0.1%) for the cotadutide and placebo groups, respectively (p = 0.011). EI was lower with cotadutide versus placebo (-41.3% [-66.7, -15.9]; p = 0.011). Difference in EE (per kJ/kg lean body mass) for cotadutide versus placebo was 1.0% (90% CI -8.4, 10.4; p = 0.784), assessed by doubly labelled water, and -6.5% (90% CI -9.3, -3.7; p < 0.001), assessed by indirect calorimetry. CONCLUSION: Weight loss with cotadutide is primarily driven by reduced EI, with relatively small compensatory changes in EE.


Assuntos
Diabetes Mellitus Tipo 2 , Ingestão de Energia , Metabolismo Energético , Obesidade , Redução de Peso , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Método Duplo-Cego , Obesidade/tratamento farmacológico , Obesidade/complicações , Ingestão de Energia/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Adulto , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Receptores de Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/agonistas , Método Simples-Cego , Idoso , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Resultado do Tratamento , Peptídeos
19.
Peptides ; 176: 171213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604379

RESUMO

Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.


Assuntos
Hormônio Adrenocorticotrópico , Glucagon , Glicopeptídeos , Humanos , Glicopeptídeos/metabolismo , Glucagon/metabolismo , Glucagon/sangue , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/metabolismo , Masculino , Adulto , Feminino , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Hidrocortisona/sangue , Receptores de Glucagon/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/sangue , Pessoa de Meia-Idade
20.
Peptides ; 176: 171219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615717

RESUMO

People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucagon , Obesidade , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA