Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.463
Filtrar
1.
Arthritis Res Ther ; 26(1): 173, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350214

RESUMO

BACKGROUND: CXC chemokine CXCL12 is involved in the pathological development of rheumatoid arthritis (RA) through abnormal migration of peripheral immune cells in the joint. Although low dose methotrexate (MTX) is clinically used to treat RA patients, CXCL12 signaling responses to MTX-mediated treatments is still not well understood. METHODS: In this study, we examined the expression of CXCR4 (cognatic receptor for CXCL12) in peripheral T cells from RA patients and arthritis mice models received from low dose MTX therapies. The effects of low dose MTX on CXCR4 were further determined via both in vitro CD3+ T cells and Cxcr4 conditional knockout (CKO) arthritis mice models. RESULTS: Our clinical data shows that low dose MTX treatment was clinically associated with down-regulated expression of chemokine receptor CXCR4 on patient peripheral T cells. In vitro, low dose MTX significantly decreased cell transmigration through down-regulated CXCR4's expression in CD3+ T cells. Consistently, CD3+ T cells treated with low dose MTX demonstrated an increased genomic hypermethylation across the promoter region of Cxcr4 gene. Furthermore, our preclinical studies showed that low dose MTX-mediated downregulation of CXCR4 significantly improved the pathological development in mouse arthritis models. Conditional disruption of the Cxcr4 gene in peripheral immune cells potentially alleviated inflammation of joints and lung tissue in the arthritis mice, though genetic modification itself overall did not change their clinical scores of arthritis, except for a significant improvement on day 45 in CXCR4 CKO arthritis mice models during the recovery phase. CONCLUSION: Our findings suggest that the effect of low dose MTX treatment could serve to eliminate inflammation in RA patients through impairment of immune cell transmigration mediated by CXCR4.


Assuntos
Antirreumáticos , Artrite Reumatoide , Regulação para Baixo , Metotrexato , Camundongos Knockout , Receptores CXCR4 , Linfócitos T , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/genética , Animais , Metotrexato/farmacologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos , Antirreumáticos/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Movimento Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/patologia
2.
Int J Nanomedicine ; 19: 9213-9226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263631

RESUMO

Introduction: Targeting, imaging, and treating tumors represent major clinical challenges. Developing effective theranostic agents to address these issues is an urgent need. Methods: We introduce an "all-in-one" tumor-targeted theranostic platform using CuFeSe2-based composite nanoparticles (CuFeSe2@PA) for magnetic resonance (MR) and computed tomography (CT) dual model imaging-guided hyperthermia tumor ablation. Plerixafor (AMD3100) is bonded to the surface of CuFeSe2 as a targeting unit. Due to the robust interaction between AMD3100 and the overexpressed Chemokine CXC type receptor 4 (CXCR4) on the membrane of 4T1 cancer cells, CuFeSe2@PA specifically recognizes 4T1 cancer cells, enriching the tumor region. Results: CuFeSe2@PA serves as a contrast agent for T2-weighted MR imaging (relaxivity value of 1.61 mM-1 s-1) and CT imaging. Moreover, it effectively suppresses tumor growth through photothermal therapy (PTT) owing to its high photothermal conversion capability and stability, with minimized side effects demonstrated both in vitro and in vivo. Discussion: CuFeSe2@PA nanoparticles show potential as dual-mode imaging contrast agents for MR and CT and provide an effective means of tumor treatment through photothermal therapy. The surface modification with Plerixafor enhances the targeting ability of the nanoparticles, performing more significant efficacy and biocompatibility in the 4T1 cancer cell model. The study demonstrates that CuFeSe2@PA is a promising multifunctional theranostic platform with clinical application potential.


Assuntos
Cobre , Imageamento por Ressonância Magnética , Terapia Fototérmica , Receptores CXCR4 , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X , Animais , Receptores CXCR4/metabolismo , Nanomedicina Teranóstica/métodos , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética/métodos , Camundongos , Cobre/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Camundongos Endogâmicos BALB C , Feminino , Humanos , Meios de Contraste/química , Nanopartículas/química , Ciclamos/farmacologia , Ciclamos/química , Benzilaminas/química
3.
Front Immunol ; 15: 1387566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253088

RESUMO

Introduction: G-protein coupled receptors (GPCRs) expressed on neutrophils regulate their mobilization from the bone marrow into the blood, their half-live in the circulation, and their pro- and anti-inflammatory activities during inflammation. Chronic kidney disease (CKD) is associated with systemic inflammatory responses, and neutrophilia is a hallmark of CKD onset and progression. Nonetheless, the role of neutrophils in CKD is currently unclear. Methods: Blood and renal tissue were collected from non-dialysis CKD (grade 3 - 5) patients to evaluate GPCR neutrophil expressions and functions in CKD development. Results: CKD patients presented a higher blood neutrophil-to-lymphocyte ratio (NLR), which was inversely correlated with the glomerular filtration rate (eGFR). A higher frequency of neutrophils expressing the senescent GPCR receptor (CXCR4) and activation markers (CD18+CD11b+CD62L+) was detected in CKD patients. Moreover, CKD neutrophils expressed higher amounts of GPCR formyl peptide receptors (FPR) 1 and 2, known as neutrophil pro- and anti-inflammatory receptors, respectively. Cytoskeletal organization, migration, and production of reactive oxygen species (ROS) by CKD neutrophils were impaired in response to the FPR1 agonist (fMLP), despite the higher expression of FPR1. In addition, CKD neutrophils presented enhanced intracellular, but reduced membrane expression of the protein Annexin A1 (AnxA1), and an impaired ability to secrete it into the extracellular compartment. Secreted and phosphorylated AnxA1 is a recognized ligand of FPR2, pivotal in anti-inflammatory and efferocytosis effects. CKD renal tissue presented a low number of neutrophils, which were AnxA1+. Conclusion: Together, these data highlight that CKD neutrophils overexpress GPCRs, which may contribute to an unbalanced aging process in the circulation, migration into inflamed tissues, and efferocytosis.


Assuntos
Neutrófilos , Receptores de Formil Peptídeo , Insuficiência Renal Crônica , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lipoxinas/metabolismo , Receptores CXCR4/metabolismo
4.
J Clin Invest ; 134(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225100

RESUMO

Sarcoidosis is a multiorgan granulomatous disease that lacks diagnostic biomarkers and targeted treatments. Using blood and skin from patients with sarcoid and non-sarcoid skin granulomas, we discovered that skin granulomas from different diseases exhibit unique immune cell recruitment and molecular signatures. Sarcoid skin granulomas were specifically enriched for type 1 innate lymphoid cells (ILC1s) and B cells and exhibited molecular programs associated with formation of mature tertiary lymphoid structures (TLSs), including increased CXCL12/CXCR4 signaling. Lung sarcoidosis granulomas also displayed similar immune cell recruitment. Thus, granuloma formation was not a generic molecular response. In addition to tissue-specific effects, patients with sarcoidosis exhibited an 8-fold increase in circulating ILC1s, which correlated with treatment status. Multiple immune cell types induced CXCL12/CXCR4 signaling in sarcoidosis, including Th1 T cells, macrophages, and ILCs. Mechanistically, CXCR4 inhibition reduced sarcoidosis-activated immune cell migration, and targeting CXCR4 or total ILCs attenuated granuloma formation in a noninfectious mouse model. Taken together, our results show that ILC1s are a tissue and circulating biomarker that distinguishes sarcoidosis from other skin granulomatous diseases. Repurposing existing CXCR4 inhibitors may offer a new targeted treatment for this devastating disease.


Assuntos
Granuloma , Imunidade Inata , Receptores CXCR4 , Sarcoidose , Receptores CXCR4/imunologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Animais , Humanos , Camundongos , Sarcoidose/imunologia , Sarcoidose/patologia , Granuloma/imunologia , Granuloma/patologia , Dermatopatias/imunologia , Dermatopatias/patologia , Feminino , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Linfócitos/imunologia , Linfócitos/patologia , Masculino , Pele/imunologia , Pele/patologia , Transdução de Sinais/imunologia
5.
Sci Rep ; 14(1): 21925, 2024 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300240

RESUMO

Glioblastoma (GBM) is the most aggressive glial tumor of the adult brain, associated with invariably fatal outcome, and a deeper understanding of the underlying malignant mechanisms is necessary to address the current therapeutic failure. We previously demonstrated the role of the CXCL12/CXCR4 axis in GBM cell migration and resistance to ionizing radiation. The atypical chemokine receptor ACKR3, responsible for CXCL12 scavenging, was previously suggested as additional important player in the context of GBM. Following validation of the detection tools, we observed that ACKR3 is expressed within GBM patient tumor tissue, distributed in diverse cell types. In contrast to CXCR4, ACKR3 expression in patient-derived stem-like cells (GSCs) remains however low, while ACKR3 gene expression by tumor cells appears to be modulated by the in-vivo environment. Using overexpression models, we also showed that in vitro ACKR3 had no significant direct effect on cell proliferation or invasion. Altogether, these results suggest that in vitro ACKR3 plays a minor role in malignant GBM cell biology and that its expression is possibly regulated by in-vivo influences. The subtle and multifaceted functions ACKR3 could exert in GBM should therefore only be tackled within a comprehensive tumor microenvironment considering tumoral but also non-tumoral cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Receptores CXCR , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Receptores CXCR/metabolismo , Receptores CXCR/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Microambiente Tumoral/genética
6.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273392

RESUMO

The identification of new compounds with potential activity against CXC chemokine receptor type 4 (CXCR4) has been broadly studied, implying several chemical families, particularly AMD3100 derivatives. Molecular modeling has played a pivotal role in the identification of new active compounds. But, has its golden age ended? A virtual library of 450,000 tetraamines of general structure 8 was constructed by using five spacers and 300 diamines, which were obtained from the corresponding commercially available cyclic amines. Diversity selection was performed to guide the virtual screening of the former database and to select the most representative set of compounds. Molecular docking on the CXCR4 crystal structure allowed us to rank the selection and identify those candidate molecules with potential antitumor activity against diffuse large B-cell lymphoma (DLBCL). Among them, compound A{17,18} stood out for being a non-symmetrical structure, synthetically feasible, and with promising activity against DLBCL in in vitro experiments. The focused study of symmetrical-related compounds allowed us to identify potential pre-hits (IC50~20 µM), evidencing that molecular design is still relevant in the development of new CXCR4 inhibitor candidates.


Assuntos
Antineoplásicos , Receptores CXCR4 , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Modelos Moleculares , Simulação de Acoplamento Molecular , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Relação Estrutura-Atividade
7.
Brain Behav ; 14(9): e70039, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295108

RESUMO

BACKGROUND: Hypoxia inducible factor-1α (HIF-1α) is a sensitive indicator of oxygen homeostasis, of which the expression elevates following hypoxia/ischemia. This study reveals the specific mechanisms underlying the effects of HIF-1α on ischemic stroke (IS). METHODS: IS model was established using middle cerebral artery occlusion (MCAO)-modeled male rats and oxygen glucose deprivation/reoxygenation (OGD/R)-treated mice hippocampal cells HT22, followed by the silencing of HIF-1α and the overexpression of C-X-C motif chemokine receptor 4 (CXCR4) and nuclear factor-kappa B (NF-κB). Following the surgery, Garcia's grading scale was applied for neurological evaluation. Cerebral infarcts and injuries were visualized using 2,3,5-triphenyltetrazolium chloride and hematoxylin-eosin staining. The levels of tumor necrosis factor-α, Interleukin (IL)-6, IL-1ß, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine, were calculated via ELISA. MTT assay and lactate dehydrogenase (LDH) assay kit were adopted to determine the viability and cytotoxicity of OGD/R-modeled cells. Reactive oxygen species (ROS) generation was evaluated using a 2'-7'dichlorofluorescin diacetate (DCFH-DA) probe. The levels of HIF-1α, CXCR4, and NF-κB p65 were quantified via Western blot and immunofluorescence, respectively. RESULTS: HIF-1α knockdown improved Garcia's score, attenuated the cerebral infarct, inflammation, and ROS generation, and alleviated the levels of inflammatory cytokines and CXCR4/NF-κB p65 in MCAO-modeled rats. Such effects were reversed following the overexpression of CXCR4 and NF-κB. Also, in OGD/R-treated HT22 cells, HIF-1α silencing diminished the cytotoxicity and ROS production and reduced the expressions of CXCR4/NF-κB p65, while promoting viability. However, CXCR4/NF-κB p65 overexpression did the opposite. CONCLUSION: HIF-1α knockdown alleviates inflammation and oxidative stress in IS through the CXCR4/NF-κB pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Inflamação , AVC Isquêmico , NF-kappa B , Estresse Oxidativo , Ratos Sprague-Dawley , Receptores CXCR4 , Animais , Masculino , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ratos , Estresse Oxidativo/fisiologia , NF-kappa B/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Inflamação/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Silenciamento de Genes
8.
J Nucl Med ; 65(10): 1640-1644, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39237344

RESUMO

C-X-C motif chemokine receptor 4 (CXCR4)-directed imaging has gained clinical interest in aiding clinical diagnostics in primary aldosteronism (PA). We retrospectively evaluated the feasibility of CXCR4-directed scintigraphy using the novel CXCR-4 ligand [99mTc]Tc-pentixatec in patients with PA. Methods: Six patients (mean age ± SD, 49 ± 15 y) underwent CXCR4-directed scintigraphy (including planar imaging and SPECT/CT) 30, 120, and 240 min after injection of 435 ± 50 MBq of [99mTc]Tc-pentixatec. Adrenal CXCR4 expression was analyzed by calculating lesion-to-contralateral ratios (LCRs). Imaging results were correlated to clinical information. Histopathology and clinical follow-up served as the standard of reference. Results: Three subjects showed lateralization of adrenal tracer accumulation, with a mean maximum lesion-to-contralateral ratio of 1.65 (range, 1.52-1.70), which correlated with morphologic findings on CT. One individual underwent adrenalectomy and presented with complete biochemical and clinical remission at follow-up. Histopathologic workup confirmed unilateral aldosterone-producing adenoma. Conclusion: [99mTc]Tc-pentixatec scintigraphy with SPECT in patients with PA is feasible and might offer a valuable alternative to CXCR4-directed imaging with [68Ga]Ga-pentixafor PET.


Assuntos
Hiperaldosteronismo , Compostos de Organotecnécio , Receptores CXCR4 , Humanos , Pessoa de Meia-Idade , Hiperaldosteronismo/diagnóstico por imagem , Masculino , Feminino , Receptores CXCR4/metabolismo , Adulto , Estudos Retrospectivos , Estudo de Prova de Conceito , Idoso , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Compostos Radiofarmacêuticos , Glândulas Suprarrenais/diagnóstico por imagem
9.
Cell Commun Signal ; 22(1): 456, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327570

RESUMO

BACKGROUND: C-X-C receptor 4(CXCR4) is widely considered to be a highly conserved G protein-coupled receptor, widely involved in the pathophysiological processes in the human body, including fibrosis. However, its role in regulating macrophage-related inflammation in the fibrotic process of prostatitis has not been confirmed. Here, we aim to describe the role of CXCR4 in modulating macrophage M1 polarization through glycolysis in the development of prostatitis fibrosis. METHODS: Use inducible experimental chronic prostatitis as a model of prostatic fibrosis. Reduce CXCR4 expression in immortalized bone marrow-derived macrophages using lentivirus. In the fibrotic mouse model, use adenovirus carrying CXCR4 agonists to detect the silencing of CXCR4 and assess the in vivo effects. RESULTS: In this study, we demonstrated that reducing CXCR4 expression during LPS treatment of macrophages can alleviate M1 polarization. Silencing CXCR4 can inhibit glycolytic metabolism, enhance mitochondrial function, and promote macrophage transition from M1 to M2. Additionally, in vivo functional experiments using AAV carrying CXCR4 showed that blocking CXCR4 in experimental autoimmune prostatitis (EAP) can alleviate inflammation and experimental prostate fibrosis development. Mechanistically, CXCR4, a chemokine receptor, when silenced, weakens the PI3K/AKT/mTOR pathway as its downstream signal, reducing c-MYC expression. PFKFB3, a key enzyme involved in glucose metabolism, is a target gene of c-MYC, thus impacting macrophage polarization and glycolytic metabolism processes.


Assuntos
Fibrose , Glicólise , Macrófagos , Próstata , Receptores CXCR4 , Masculino , Animais , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Macrófagos/metabolismo , Camundongos , Próstata/patologia , Próstata/metabolismo , Prostatite/patologia , Prostatite/metabolismo , Prostatite/genética , Transdução de Sinais , Camundongos Endogâmicos C57BL , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Polaridade Celular , Fosfatidilinositol 3-Quinases/metabolismo , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética
10.
J Integr Neurosci ; 23(9): 172, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39344243

RESUMO

BACKGROUND: Infection of astrocytes by Human Immunodeficiency Virus (HIV-1) remains a topic of debate, with conflicting data, yet instances of astrocytes containing viral DNA have been observed in vivo. In this study, we aimed to elucidate potential routes through which astrocytes could be infected and their ability to produce infectious particles using primary human astrocytes. METHODS: We infected primary astrocytes derived from either neuroprogenitor cells (NPCs) or induced pluripotent stem cells (iPSCs) that express both C-X-C chemokine receptor type 4 (CXCR4) and the C-C chemokine receptor type 5 (CCR5) coreceptors, using either cell-free HIV-1 virus directly or cell-associated virus indirectly through infected macrophages and microglia. RESULTS: Low-level infectivity by cell-free viruses was primarily attributed to a defect in the entry process. Bypassing HIV-specific receptor-mediated entry using pseudotyped viruses resulted in productive infection and the release of infectious particles. CONCLUSIONS: These findings suggest that astrocytes may be one of the potential sources of neurotoxicity in HIV-associated neurocognitive disorders (HAND) and could possibly act as reservoirs for HIV in the central nervous system (CNS).


Assuntos
Astrócitos , HIV-1 , Astrócitos/virologia , Astrócitos/metabolismo , Humanos , HIV-1/fisiologia , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/virologia , Células-Tronco Neurais/virologia , Células-Tronco Neurais/metabolismo , Receptores CXCR4/metabolismo , Receptores CCR5/metabolismo , Infecções por HIV
11.
PLoS Pathog ; 20(9): e1012472, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226327

RESUMO

Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency disease in humans caused by a gain of function in CXCR4, mostly due to inherited heterozygous mutations in CXCR4. One major clinical symptom of WHIM patients is their high susceptibility to human papillomavirus (HPV) induced disease, such as warts. Persistent high risk HPV infections cause 5% of all human cancers, including cervical, anogenital, head and neck and some skin cancers. WHIM mice bearing the same mutation identified in WHIM patients were created to study the underlying causes for the symptoms manifest in patients suffering from the WHIM syndrome. Using murine papillomavirus (MmuPV1) as an infection model in mice for HPV-induced disease, we demonstrate that WHIM mice are more susceptible to MmuPV1-induced warts (papillomas) compared to wild type mice. Namely, the incidence of papillomas is higher in WHIM mice compared to wild type mice when mice are exposed to low doses of MmuPV1. MmuPV1 infection facilitated both myeloid and lymphoid cell mobilization in the blood of wild type mice but not in WHIM mice. Higher incidence and larger size of papillomas in WHIM mice correlated with lower abundance of infiltrating T cells within the papillomas. Finally, we demonstrate that transplantation of bone marrow from wild type mice into WHIM mice normalized the incidence and size of papillomas, consistent with the WHIM mutation in hematopoietic cells contributing to higher susceptibility of WHIM mice to MmuPV1-induced disease. Our results provide evidence that MmuPV1 infection in WHIM mice is a powerful preclinical infectious model to investigate treatment options for alleviating papillomavirus infections in WHIM syndrome.


Assuntos
Infecções por Papillomavirus , Doenças da Imunodeficiência Primária , Verrugas , Animais , Camundongos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Verrugas/imunologia , Verrugas/virologia , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/genética , Modelos Animais de Doenças , Papillomaviridae , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/virologia , Síndromes de Imunodeficiência/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Camundongos Endogâmicos C57BL , Suscetibilidade a Doenças , Feminino
12.
Elife ; 132024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248648

RESUMO

CXCR4 is a ubiquitously expressed chemokine receptor that regulates leukocyte trafficking and arrest in both homeostatic and pathological states. It also participates in organogenesis, HIV-1 infection, and tumor development. Despite the potential therapeutic benefit of CXCR4 antagonists, only one, plerixafor (AMD3100), which blocks the ligand-binding site, has reached the clinic. Recent advances in imaging and biophysical techniques have provided a richer understanding of the membrane organization and dynamics of this receptor. Activation of CXCR4 by CXCL12 reduces the number of CXCR4 monomers/dimers at the cell membrane and increases the formation of large nanoclusters, which are largely immobile and are required for correct cell orientation to chemoattractant gradients. Mechanistically, CXCR4 activation involves a structural motif defined by residues in TMV and TMVI. Using this structural motif as a template, we performed in silico molecular modeling followed by in vitro screening of a small compound library to identify negative allosteric modulators of CXCR4 that do not affect CXCL12 binding. We identified AGR1.137, a small molecule that abolishes CXCL12-mediated receptor nanoclustering and dynamics and blocks the ability of cells to sense CXCL12 gradients both in vitro and in vivo while preserving ligand binding and receptor internalization.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/química , Quimiocina CXCL12/metabolismo , Regulação Alostérica , Humanos , Animais , Ligação Proteica , Domínios Proteicos , Modelos Moleculares
13.
J Clin Invest ; 134(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225095

RESUMO

Sarcoidosis is an inflammatory disease characterized by immune cell-rich granulomas that form in multiple organs. In this issue of the JCI, Sati and colleagues used scRNA-seq and spatial transcriptomics of skin samples from patients with sarcoidosis and non-sarcoidosis granulomatous disease to identify upregulation of a stromal-immune CXCL12/CXCR4 axis and accumulation of type 1 innate lymphoid cells (ILC1s) in sarcoidosis. The accumulation of ILC1s in skin and blood was specific to patients with sarcoidosis and not observed in other granulomatous diseases. The authors used a mouse model of lung granuloma to show that ILCs contribute to granuloma formation and that blockade of CXCR4 reduced the formation of granulomas, providing a proof of concept that sarcoidosis may be treated by CXCR4 blockade to prevent the progression of disease in patients. These results suggest ILC1s could serve as a diagnostic biomarker in sarcoidosis and a potential therapeutic target.


Assuntos
Biomarcadores , Imunidade Inata , Linfócitos , Receptores CXCR4 , Sarcoidose , Humanos , Animais , Camundongos , Sarcoidose/imunologia , Sarcoidose/patologia , Biomarcadores/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia
14.
Sci Adv ; 10(38): eadq1476, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39292787

RESUMO

Cross-talk between hematopoietic stem and progenitor cells (HSPCs) and bone marrow (BM) cells is critical for homing and sustained engraftment after transplantation. In particular, molecular and physical adaptation of sinusoidal endothelial cells (ECs) promote HSPC BM occupancy; however, signals that govern these events are not well understood. Extracellular vesicles (EVs) are mediators of cell-cell communication crucial in shaping tissue microenvironments. Here, we demonstrate that integrin α4ß7 on murine HSPC EVs targets uptake into ECs. In BM ECs, HSPC EVs induce up-regulation of C-C motif chemokine receptor 2 (CCR2) ligands that synergize with CXCL12-CXCR4 signaling to promote BM homing. In nonirradiated murine models, marrow preconditioning with HSPC EVs or recombinant CCR2 ligands improves homing and early graft occupancy after transplantation. These findings identify a role for HSPC EVs in remodeling ECs, newly define CCR2-dependent graft homing, and inform novel translational conditioning strategies to improve HSPC transplantation.


Assuntos
Medula Óssea , Vesículas Extracelulares , Células-Tronco Hematopoéticas , Receptores CCR2 , Animais , Camundongos , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Movimento Celular , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Humanos
15.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125877

RESUMO

Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.


Assuntos
Proteínas de Fusão bcr-abl , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Animais , Camundongos , Humanos , Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linhagem Celular Tumoral , Cromossomo Filadélfia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
16.
Cell Rep Med ; 5(9): 101692, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39163864

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) poses significant clinical challenges, often presenting as unresectable with limited biopsy options. Here, we show that circulating tumor cells (CTCs) offer a promising alternative, serving as a "liquid biopsy" that enables the generation of in vitro 3D models and highly aggressive in vivo models for functional and molecular studies in advanced PDAC. Within the retrieved CTC pool (median 65 CTCs/5 mL), we identify a subset (median content 8.9%) of CXCR4+ CTCs displaying heightened stemness and metabolic traits, reminiscent of circulating cancer stem cells. Through comprehensive analysis, we elucidate the importance of CTC-derived models for identifying potential targets and guiding treatment strategies. Screening of stemness-targeting compounds identified stearoyl-coenzyme A desaturase (SCD1) as a promising target for advanced PDAC. These results underscore the pivotal role of CTC-derived models in uncovering therapeutic avenues and ultimately advancing personalized care in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Animais , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Camundongos , Feminino , Masculino , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
17.
Mol Imaging Biol ; 26(5): 774-779, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39090381

RESUMO

C-X-C motif chemokine receptor 4 (CXCR4)-directed molecular imaging provides excellent read-out capabilities in patients with marginal zone lymphoma (MZL). We aimed to determine the interobserver agreement rate of CXCR4-targeted PET/CT among readers with different levels of experience. METHODS: 50 subjects with MZL underwent CXCR4-targeted PET/CT, which were reviewed by four readers (including two experienced and two less experienced observers). The following 8 parameters were investigated: overall scan result, CXCR4 density in lymphoma tissue, extranodal organ involvement, No. of affected extranodal organs and extranodal organ metastases, lymph node (LN) involvement and No. of affected LN areas and LN metastases. We applied intraclass correlation coefficients (ICC; < 0.4, poor; 0.4-0.59, fair; 0.6-0.74, good and > 0.74 excellent agreement rates). RESULTS: Among all readers, fair agreement was recorded for No. of affected extranodal organs (ICC, 0.40; 95% confidence interval [CI], 0.25-0.68), overall scan result (ICC, 0.42; 95%CI, 0.28-0.57), CXCR4 density in lymphoma tissue (ICC, 0.52; 95%CI, 0.38-0.66), and No. of extranodal organ metastases (ICC, 0.55; 95%CI, 0.41-0.61) and LN involvement (ICC, 0.59; 95%CI, 0.46-0.71). Good agreement rates were observed for No. of LN metastases (ICC, 0.71; 95%CI, 0.60-0.81) and No. of LN areas (ICC, 0.73; 95%CI, 0.63-0.82), while extranodal organ involvement (ICC, 0.35; 95%CI, 0.21-0.51) achieved poor concordance. On a reader-by-reader comparison, the experienced readers achieved significantly higher agreement rates in 4/8 (50%) investigated scan items (ICC, range, 0.21-0.90, P < / = 0.04). In the remaining 4/8 (50%), a similar trend with higher ICCs for the experienced readers was recorded (n.s.). CONCLUSION: CXCR4-directed PET/CT mainly provided fair to good agreement rates for scan assessment, while a relevant level of experience seems to be required for an accurate imaging read-out.


Assuntos
Linfoma de Zona Marginal Tipo Células B , Variações Dependentes do Observador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Linfoma de Zona Marginal Tipo Células B/diagnóstico por imagem , Linfoma de Zona Marginal Tipo Células B/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Adulto , Idoso de 80 Anos ou mais
18.
Cells ; 13(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39195225

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.


Assuntos
Comunicação Autócrina , Fibroblastos Associados a Câncer , Movimento Celular , Quimiocina CXCL12 , Neoplasias Colorretais , Células-Tronco Neoplásicas , Comunicação Parácrina , Receptores CXCR4 , Transdução de Sinais , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Invasividade Neoplásica , Camundongos , Microambiente Tumoral , Linhagem Celular Tumoral , Células HCT116 , Masculino , Feminino , Células HT29
19.
Cell Rep ; 43(8): 114578, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39093700

RESUMO

CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.


Assuntos
Quimiocina CXCL12 , Microscopia Crioeletrônica , Ligação Proteica , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/química , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/química , Microscopia Crioeletrônica/métodos , Humanos , Modelos Moleculares , Sítios de Ligação , Células HEK293
20.
FASEB J ; 38(15): e23851, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39108204

RESUMO

Targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) with specific antibody offers long-term benefits for cancer immunotherapy but can cause severe adverse effects in the heart. This study aimed to investigate the role of anti-CTLA-4 antibody in pressure overload-induced cardiac remodeling and dysfunction. Transverse aortic constriction (TAC) was used to induce cardiac hypertrophy and heart failure in mice. Two weeks after the TAC treatment, mice received anti-CTLA-4 antibody injection twice a week at a dose of 10 mg/kg body weight. The administration of anti-CTLA-4 antibody exacerbated TAC-induced decline in cardiac function, intensifying myocardial hypertrophy and fibrosis. Further investigation revealed that anti-CTLA-4 antibody significantly elevated systemic inflammatory factors levels and facilitated the differentiation of T helper 17 (Th17) cells in the peripheral blood of TAC-treated mice. Importantly, anti-CTLA-4 mediated differentiation of Th17 cells and hypertrophic phenotype in TAC mice were dramatically alleviated by the inhibition of interleukin-17A (IL-17A) by an anti-IL-17A antibody. Furthermore, the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100, also reversed anti-CTLA-4-mediated cardiotoxicity in TAC mice. Overall, these results suggest that the administration of anti-CTLA-4 antibody exacerbates pressure overload-induced heart failure by activating and promoting the differentiation of Th17 cells. Targeting the CXCR4/Th17/IL-17A axis could be a potential therapeutic strategy for mitigating immune checkpoint inhibitors-induced cardiotoxicity.


Assuntos
Antígeno CTLA-4 , Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Células Th17 , Animais , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Masculino , Interleucina-17/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Diferenciação Celular , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA