Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 33(10): 112, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27586145

RESUMO

This study aimed to evaluate whether GSTM1 and GSTT1 (presents or nulls), GSTP1 c.313A>G and NQO2 c.-102A>C polymorphisms, involved in xenobiotic detoxification pathways, alter outcomes of epithelial ovarian cancer (EOC) patients. DNA from 84 EOC patients diagnosed at the University of Campinas Academic Hospital from January 1995 and July 2007 was analyzed by polymerase chain reaction and restriction fragment length polymorphism assays. The prognostic impact of genotypes of polymorphisms on progression-free survival and overall survival (OS) of EOC patients was examined using the Kaplan-Meier probability estimates and univariate and multivariate Cox proportional hazard ratio (HR) regression analyses. The significant results of Cox analyses were validated using a bootstrap resampling study (1000 replications). At 60 months of follow-up, lower OS was seen in patients with GSTT1 null genotype (50.0 vs. 76.7 %, P = 0.02) compared with the other genotype (Kaplan-Meier estimate). This outcome remained the same in univariate Cox analysis (HR 2.22, P = 0.02). After multivariate Cox analysis, patients with GSTT1 null (HR 2.11, P = 0.04, P bootstrap = 0.04) and NQO2 AA (HR 2.13, P = 0.03, P bootstrap = 0.04) genotypes were under greater risks of progressing to death when compared with those with others genotypes. Our data suggest, for the first time, that inherited abnormalities in xenobiotic detoxification pathway related to GSTT1 and NQO2 c.-102A>C polymorphisms act as independent prognostic factors for OS of EOC patients.


Assuntos
Glutationa Transferase/genética , Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Quinona Redutases/genética , Adulto , Idoso , Carcinoma Epitelial do Ovário , Feminino , Glutationa S-Transferase pi , Humanos , Inativação Metabólica/genética , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Xenobióticos/farmacocinética , Adulto Jovem
2.
Microbiology (Reading) ; 155(Pt 1): 249-256, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19118365

RESUMO

Azotobacter vinelandii is a nitrogen-fixing soil bacterium that produces the exopolysaccharide alginate. In this report we describe the isolation and characterization of A. vinelandii strain GG4, which carries an nqrE : : Tn5 mutation resulting in alginate overproduction. The nqrE gene encodes a subunit of the Na+-translocating NADH : ubiquinone oxidoreductase (Na+-NQR). As expected, Na+-NQR activity was abolished in mutant GG4. When this strain was complemented with the nqrEF genes this activity was restored and alginate production was reduced to wild-type levels. Na+-NQR may be the main sodium pump of A. vinelandii under the conditions tested ( approximately 2 mM Na+) since no Na+/H+-antiporter activity was detected. Collectively our results indicate that in A. vinelandii the lack of Na+-NQR activity caused the absence of a transmembrane Na+ gradient and an increase in alginate production.


Assuntos
Alginatos/metabolismo , Azotobacter vinelandii/enzimologia , Regulação Bacteriana da Expressão Gênica , Quinona Redutases/metabolismo , Sódio/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Elementos de DNA Transponíveis , Mutação , Quinona Redutases/genética , Ubiquinona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA