Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431688

RESUMO

The C-terminal domain (CTD) kinase I (CTDK-1) complex is the primary RNA Polymerase II (Pol II) CTD Ser2 kinase in budding yeast. CTDK-1 consists of a cyclin-dependent kinase (CDK) Ctk1, a cyclin Ctk2, and a unique subunit Ctk3 required for CTDK-1 activity. Here, we present a crystal structure of CTDK-1 at 1.85-Å resolution. The structure reveals that, compared to the canonical two-component CDK-cyclin system, the third component Ctk3 of CTDK-1 plays a critical role in Ctk1 activation by stabilizing a key element of CDK regulation, the T-loop, in an active conformation. In addition, Ctk3 contributes to the assembly of CTDK-1 through extensive interactions with both Ctk1 and Ctk2. We also demonstrate that CTDK-1 physically and genetically interacts with the serine/arginine-like protein Gbp2. Together, the data in our work reveal a regulatory mechanism of CDK complexes.


Assuntos
Quinases Ciclina-Dependentes/ultraestrutura , Proteínas Quinases/ultraestrutura , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cristalografia por Raios X , Quinases Ciclina-Dependentes/genética , Ciclinas/química , Ciclinas/ultraestrutura , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 117(37): 22849-22857, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32855301

RESUMO

The human CDK-activating kinase (CAK), a complex composed of cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II (Pol II) subunit RPB1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell cycle progression. Here, we have determined the three-dimensional (3D) structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and to aid in the rational design of therapeutic compounds.


Assuntos
Quinases Ciclina-Dependentes/ultraestrutura , Ciclo Celular , Divisão Celular , Microscopia Crioeletrônica/métodos , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
3.
Proc Natl Acad Sci U S A ; 103(43): 15788-93, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17043218

RESUMO

CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/ultraestrutura , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/ultraestrutura , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/ultraestrutura
4.
Eur J Biochem ; 243(1-2): 518-26, 1997 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9030780

RESUMO

Cyclin-dependent kinases (cdk) control the cell division cycle (cdc). These kinases and their regulators are frequently deregulated in human tumours. A potent inhibitor of cdks, roscovitine [2-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurin e], was identified by screening a series of C2,N6,N9-substituted adenines on purified cdc2/cyclin B. Roscovitine displays high efficiency and high selectivity (Meijer, L., Borgne, A., Mulner, O., Chong, J. P. J., Blow, J. J., Inagaki, N., Inagaki, M., Delcros, J.-G. & Moulinoux, J.-P. (1997) Eur. J. Biochem. 243, 527-536). It behaves as a competitive inhibitor for ATP binding to cdc2. We determined the crystal structure of a complex between cdk2 and roscovitine at 0.24-nm (2.4 A) resolution and refined to an Rfactor of 0.18. The purine portion of the inhibitor binds to the adenine binding pocket of cdk2. The position of the benzyl ring group of the inhibitor enables the inhibitor to make contacts with the enzyme not observed in the ATP-complex structure. Analysis of the position of this benzyl ring explains the specificity of roscovitine in inhibiting cdk2. The structure also reveals that the (R)-stereoisomer of roscovitine is bound to cdk2. The (R)-isomer is about twice as potent in inhibiting cdc2/cyclin B than the (S)-isomer. Results from structure/activity studies and from analysis of the cdk2/roscovitine complex crystal structure should allow the design of even more potent cdk inhibitors.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Purinas/química , Purinas/farmacologia , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Proteína Quinase CDC2/metabolismo , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/ultraestrutura , Humanos , Ligação de Hidrogênio , Cinetina , Ligantes , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/ultraestrutura , Estrutura Terciária de Proteína , Roscovitina , Estrelas-do-Mar
5.
Cell ; 82(6): 915-25, 1995 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-7553852

RESUMO

In normal human fibroblasts, cyclin A-CDK2 exists in a quaternary complex that contains p21 and PCNA. In many transformed cells, p21 disappears, and a substantial fraction of cyclin A-CDK2 complexes with p9CKS1/CKS2, p19, and p45. To investigate the significance of these rearrangements, we have isolated cDNAs encoding p19 and p45. In vitro reconstitution demonstrated that binding of p19 to cyclin A-CDK2 requires p45. Addition of these proteins to the kinase had no substantial effect on the kinase activity in vitro. Interference with p45 function in vivo by microinjection of antibodies or antisense oligonucleotides prevented entry into S phase in both normal and transformed cells. Cyclin A-CDK2 has previously been identified as a kinase whose activity is essential for S phase. Our results identify p45 as an essential element of this activity. The abundance of p45 is greatly increased in many transformed cells. This could result in changes in cell cycle control that contribute to the process of cellular transformation.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/ultraestrutura , Ciclinas/ultraestrutura , Proteínas Serina-Treonina Quinases/ultraestrutura , Fase S/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , DNA Complementar/isolamento & purificação , Fibroblastos/citologia , Células HeLa , Humanos , Rim/citologia , Dados de Sequência Molecular , Peso Molecular , Ligação Proteica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Associadas a Fase S , Transformação Genética/fisiologia
6.
Chromosoma ; 103(8): 517-27, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7621701

RESUMO

DNA replication in eukaryotic cells is restricted to the S-phase of the cell cycle. In a cell-free replication model system, using SV40 origin-containing DNA, extracts from G1 cells are inefficient in supporting DNA replication. We have undertaken a detailed analysis of the subcellular localization of replication proteins and cell cycle regulators to determine when these proteins are present in the nucleus and therefore available for DNA replication. Cyclin A and cdk2 have been implicated in regulating DNA replication, and may be responsible for activating components of the DNA replication initiation complex on entry into S-phase. G1 cell extracts used for in vitro replication contain the replication proteins RPA (the eukaryotic single-stranded DNA binding protein) and DNA polymerase alpha as well as cdk2, but lack cyclin A. On localizing these components in G1 cells we find that both RPA and DNA polymerase alpha are present as nuclear proteins, while cdk2 is primarily cytoplasmic and there is no detectable cyclin A. An apparent change in the distribution of these proteins occurs as the cell enters S-phase. Cyclin A becomes abundant and both cyclin A and cdk2 become localized to the nucleus in S-phase. In contrast, the RPA-34 and RPA-70 subunits of RPA, which are already nuclear, undergo a transition from the uniform nuclear distribution observed during G1, and now display a distinct punctate nuclear pattern. The initiation of DNA replication therefore most likely occurs by modification and activation of these replication initiation proteins rather than by their recruitment to the nuclear compartment.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Interfase/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/ultraestrutura , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Sistema Livre de Células , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/ultraestrutura , Ciclinas/metabolismo , Ciclinas/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , DNA Polimerase II/metabolismo , DNA Polimerase II/ultraestrutura , DNA Viral , Proteínas de Ligação a DNA/ultraestrutura , Eletroforese em Gel de Ágar , Fase G1/fisiologia , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Antígeno Nuclear de Célula em Proliferação/análise , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/ultraestrutura , Origem de Replicação/fisiologia , Proteína de Replicação A , Fase S/fisiologia , Vírus 40 dos Símios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA