Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 60(4): 596-602, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22699107

RESUMO

Peptides isolated from animal venoms have shown the ability to regulate pancreatic beta cell function. Characterization of wasp venoms is important, since some components of these venoms present large molecular variability, and potential interactions with different signal transduction pathways. For example, the well studied mastoparan peptides interact with a diversity of cell types and cellular components and stimulate insulin secretion via the inhibition of ATP dependent K(+) (K(ATP)) channels, increasing intracellular Ca(2+) concentration. In this study, the insulin secretion of isolated pancreatic islets from adult Swiss mice was evaluated in the presence of synthetic Agelaia MP-I (AMP-I) peptide, and some mechanisms of action of this peptide on endocrine pancreatic function were characterized. AMP-I was manually synthesized using the Fmoc strategy, purified by RP-HPLC and analyzed using ESI-IT-TOF mass spectrometry. Isolated islets were incubated at increasing glucose concentrations (2.8, 11.1 and 22.2 mM) without (Control group: CTL) or with 10 µM AMP-I (AMP-I group). AMP-I increased insulin release at all tested glucose concentrations, when compared with CTL (P < 0.05). Since molecular analysis showed a potential role of the peptide interaction with ionic channels, insulin secretion was also analyzed in the presence of 250 µM diazoxide, a K(ATP) channel opener and 10 µM nifedipine, a Ca(2+) channel blocker. These drugs abolished insulin secretion in the CTL group in the presence of 2.8 and 11.1 mM glucose, whereas AMP-I also enhanced insulin secretory capacity, under these glucose conditions, when incubated with diazoxide and nifedipine. In conclusion, AMP-I increased beta cell secretion without interfering in K(ATP) and L-type Ca(2+) channel function, suggesting a different mechanism for this peptide, possibly by G protein interaction, due to the structural similarity of this peptide with Mastoparan-X, as obtained by modeling.


Assuntos
Hipoglicemiantes/farmacologia , Proteínas de Insetos/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Peptídeos/farmacologia , Venenos de Vespas/química , Animais , Cálcio/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Hipoglicemiantes/síntese química , Proteínas de Insetos/síntese química , Proteínas de Insetos/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Canais KATP/efeitos dos fármacos , Masculino , Camundongos , Peptídeos/síntese química , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Venenos de Vespas/síntese química , Venenos de Vespas/farmacologia , Vespas
2.
Biopolymers ; 92(1): 65-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18975382

RESUMO

Glycine-rich proteins (GRPs) serve a variety of biological functions. Acanthoscurrin is an antimicrobial GRP isolated from hemocytes of the Brazilian spider Acanthoscurria gomesiana. Aiming to contribute to the knowledge of the secondary structure and stepwise solid-phase synthesis of GRPs' glycine-rich domains, we attempted to prepare G(101)GGLGGGRGGGYG(113)GGGGYGGGYG(123) GGY(126)GGGKYK(132)-NH(2), acanthoscurrin C-terminal amidated fragment. Although a theoretical prediction did not indicate high aggregation potential for this peptide, repetitive incomplete aminoacylations were observed after incorporating Tyr(126) to the growing peptide-MBHA resin (Boc chemistry) at 60 degrees C. The problem was not solved by varying the coupling reagents or solvents, adding chaotropic salts to the reaction media or changing the resin/chemistry (Rink amide resin/Fmoc chemistry). Some improvement was made when CLEAR amide resin (Fmoc chemistry) was used, as it allowed for obtaining fragment G(113)-K(132). NIR-FT-Raman spectra collected for samples of the growing peptide-MBHA, -Rink amide resin and -CLEAR amide resin revealed the presence of beta-sheet structures. Only the combination of CLEAR-amide resin, 60 degrees C, Fmoc-(Fmoc-Hmb)Gly-OH and LiCl (the last two used alternately) was able to inhibit the phenomenon, as proven by NIR-FT-Raman analysis of the growing peptide-resin, allowing the total synthesis of desired fragment Gly(101)-K(132). In summary, this work describes a new difficult sequence, contributes to understanding stepwise solid-phase synthesis of this type of peptide and shows that, at least while protected and linked to a resin, this GRP's glycine-rich motif presents an early tendency to assume beta-sheet structures.


Assuntos
Antibacterianos/síntese química , Proteínas de Insetos/síntese química , Fragmentos de Peptídeos/síntese química , Temperatura , Sequência de Aminoácidos , Animais , Antibacterianos/química , Compostos Benzidrílicos , Cromatografia Líquida de Alta Pressão , Proteínas de Insetos/química , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Análise Espectral Raman , Aranhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA