Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Cell Death Dis ; 15(9): 644, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227379

RESUMO

Acquired resistance is inevitable in the treatment of non-small cell lung cancer (NSCLC) with osimertinib, and one of the primary mechanisms responsible for this resistance is the epithelial-mesenchymal transition (EMT). We identify upregulation of the proviral integration site for Moloney murine leukemia virus 1 (PIM1) and functional inactivation of glycogen synthase kinase 3ß (GSK3ß) as drivers of EMT-associated osimertinib resistance. Upregulation of PIM1 promotes the growth, invasion, and resistance of osimertinib-resistant cells and is significantly correlated with EMT molecules expression. Functionally, PIM1 suppresses the ubiquitin-proteasome degradation of snail family transcriptional repressor 1 (SNAIL) and snail family transcriptional repressor 2 (SLUG) by deactivating GSK3ß through phosphorylation. The stability and accumulation of SNAIL and SLUG facilitate EMT and encourage osimertinib resistance. Furthermore, treatment with PIM1 inhibitors prevents EMT progression and re-sensitizes osimertinib-resistant NSCLC cells to osimertinib. PIM1/GSK3ß signaling is activated in clinical samples of osimertinib-resistant NSCLC, and dual epidermal growth factor receptor (EGFR)/PIM1 blockade synergistically reverse osimertinib-resistant NSCLC in vivo. These data identify PIM1 as a driver of EMT-associated osimertinib-resistant NSCLC cells and predict that PIM1 inhibitors and osimertinib combination therapy will provide clinical benefit in patients with EGFR-mutant NSCLC.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Receptores ErbB , Glicogênio Sintase Quinase 3 beta , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-pim-1 , Transdução de Sinais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Mutação/genética , Camundongos Nus , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Indóis , Pirimidinas
2.
Inflamm Res ; 73(10): 1671-1685, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079978

RESUMO

OBJECTIVE AND DESIGN: This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways. MATERIALS: THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used. TREATMENT: None. METHODS: Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation. RESULTS: PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/ß and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-ß-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity. CONCLUSIONS: Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.


Assuntos
Inflamação , Lipopolissacarídeos , Proteínas Proto-Oncogênicas c-pim-1 , Transdução de Sinais , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Humanos , Lipopolissacarídeos/farmacologia , Animais , Camundongos , Inflamação/metabolismo , Citocinas/metabolismo , Células Jurkat , Células RAW 264.7 , NF-kappa B/metabolismo , Células THP-1 , Linhagem Celular , Macrófagos/metabolismo , Macrófagos/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
3.
Oncogene ; 43(33): 2517-2530, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004633

RESUMO

Elevated infiltration of tumor-associated macrophages (TAMs) drives tumor progression and correlates with poor prognosis for various tumor types. Our research identifies that the ablation of the Pim-1 proto-oncogene (PIM1) in non-small cell lung cancer (NSCLC) suppresses TAM infiltration and prevents them from polarizing toward the M2 phenotype, thereby reshaping the tumor immune microenvironment (TME). The predominant mechanism through which PIM1 exerts its impact on macrophage chemotaxis and polarization involves CC motif chemokine ligand 2 (CCL2). The expression level of PIM1 is positively correlated with high CCL2 expression in NSCLC, conferring a worse overall patient survival. Mechanistically, PIM1 deficiency facilitates the reprogramming of TAMs by targeting nuclear factor kappa beta (NF-κB) signaling and inhibits CCL2 transactivation by NSCLC cells. The decreased secretion of CCL2 impedes TAM accumulation and their polarization toward a pro-tumoral phenotype. Furthermore, Dual blockade of Pim1 and PD-1 collaboratively suppressed tumor growth, repolarized macrophages, and boosted the efficacy of anti-PD-1 antibody. Collectively, our findings elucidate the pivotal role of PIM1 in orchestrating TAMs within the TME of NSCLC and highlight the potential of PIM1 inhibition as a strategy for enhancing the efficacy of cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CCL2 , Neoplasias Pulmonares , NF-kappa B , Proteínas Proto-Oncogênicas c-pim-1 , Microambiente Tumoral , Macrófagos Associados a Tumor , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Microambiente Tumoral/imunologia , Humanos , Quimiocina CCL2/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Camundongos , NF-kappa B/metabolismo , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Proto-Oncogene Mas , Macrófagos/imunologia , Macrófagos/metabolismo , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Transdução de Sinais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo
4.
Cancer Med ; 13(13): e7445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38940430

RESUMO

INTRODUCTION: Nucleoporin 98 (NUP98) fusion proteins are recurrently found in leukemia and are associated with unfavorable clinical outcomes. They are distributed to the nucleus and contribute to leukemogenesis via aberrant transcriptional regulation. We previously identified NUP98-BPTF (NB) fusion in patients with T-cell acute lymphoblastic leukemia (T-ALL) using next-generation sequencing. The FG-repeat of NUP98 and the PHD finger and bromodomain of bromodomain PHD finger transcription factor (BPTF) are retained in the fusion. Like other NUP98 fusion proteins, NB is considered to regulate genes that are essential for leukemogenesis. However, its target genes or pathways remain unknown. MATERIALS AND METHODS: To investigate the potential oncogenic properties of the NB fusion protein, we lentivirally transduced a doxycycline-inducible NB expression vector into mouse NIH3T3 fibroblasts and human Jurkat T-ALL cells. RESULTS: NB promoted the transformation of mouse NIH3T3 fibroblasts by upregulating the proto-oncogene Pim1, which encodes a serine/threonine kinase. NB transcriptionally regulated Pim1 expression by binding to its promoter and activated MYC and mTORC1 signaling. PIM1 knockdown or pharmacological inhibition of mTORC1 signaling suppressed NB-induced NIH3T3 cell transformation. Furthermore, NB enhanced the survival of human Jurkat T-ALL cells by inactivating the pro-apoptotic protein BCL2-associated agonist of cell death (BAD). CONCLUSION: We demonstrated the pivotal role of NB in cell transformation and survival and identified PIM1as a key downstream target of NB. These findings propose a promising therapeutic strategy for patients with NB fusion-positive leukemia.


Assuntos
Transformação Celular Neoplásica , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-pim-1 , Animais , Humanos , Camundongos , Apoptose , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Jurkat , Células NIH 3T3 , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 663-669, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926951

RESUMO

OBJECTIVE: To investigate the effects of the serine/threonine kinase family member 1 (PIM1) gene on the proliferation and apoptosis of acute myeloid leukemia (AML) U937 cells, and the regulation effect on Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. METHODS: Bone marrow mononuclear cells from newly diagnosed adult AML patients and patients with iron deficiency anemia were collected and PIM1 mRNA expression was detected by RT-qPCR. AML cell line U937 cells were divided into U937 group (U937 cells were cultured normally), Si-PIM1 group (U937 cells were transfected with low expression adenovirus vector containing PIM1 mRNA), Si-NC group (U937 cells were transfected with low expression adenovirus vector without PIM1 mRNA), coumermycin A1 (CoA1) group (JAK2 activator CoA1 was added to U937 cells at a concentration of 20 µmol/L), and Si-PIM1+CoA1 group (U937 cells were transfected with adenoviral vector containing low expression of PIM1 mRNA and added with CoA1 at a concentration of 20 µmol/L). After culture for 24 h, the expressions of PIM1 mRNA and protein, JAK2/STAT3 pathway, cell cycle and apoptosis-related proteins in U937 cells were detected by RT-qPCR and Western blot, the cell proliferation activity was detected by MTT assay, and flow cytometry was used to detect cell cycle changes and apoptosis rate. RESULTS: The PIM1 mRNA expression level in bone marrow mononuclear cells in AML patients was higher than that in patients with iron deficiency anemia (P < 0.05). Compared with U937 group, PIM1 mRNA and protein, phosphorylated JAK2 (p-JAK2)/JAK2, phosphorylated STAT3 (p-STAT3)/STAT3, Cyclin D1, cyclin-dependent kinase 2 (CDK2) protein, cell proliferation activity, S phase and G 2/M phase proportions were decreased in Si-PIM1 group (all P < 0.05), while p27, Caspase-3 protein, G0/G1 phase proportion and apoptosis rate were increased (all P < 0.05). However, the changes of above indicators in CoA1 group were just opposite to those in Si-PIM1 group, indicating that CoA1 could reverse the effect of Si-PIM1 on U937 cells. There were no significant differences in above indexes of U937 cells between U937 group, Si-PIM1+CoA1 group and Si-NC group (P >0.05). CONCLUSION: Knockdown of PIM1 gene expression can inhibit U937 cell proliferation and promote apoptosis, in order to alleviate ALM process, which may be related to the inhibition of JAK2/STAT3 pathway activation.


Assuntos
Apoptose , Proliferação de Células , Janus Quinase 2 , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-pim-1 , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Janus Quinase 2/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Fator de Transcrição STAT3/metabolismo , Leucemia Mieloide Aguda/genética , Células U937
6.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930955

RESUMO

The CRISPR-Cas9 system has emerged as the most prevalent gene editing technology due to its simplicity, high efficiency, and low cost. However, the homology-directed repair (HDR)-mediated gene knock-in in this system suffers from low efficiency, which limits its application in animal model preparation, gene therapy, and agricultural genetic improvement. Here, we report the design and optimization of a simple and efficient reporter-based assay to visualize and quantify HDR efficiency. Through random screening of a small molecule compound library, two groups of compounds, including the topoisomerase inhibitors and PIM1 kinase inhibitors, have been identified to promote HDR. Two representative compounds, etoposide and quercetagetin, also significantly enhance the efficiency of CRISPR-Cas9 and HDR-mediated gene knock-in in mouse embryos. Our study not only provides an assay to screen compounds that may facilitate HDR but also identifies useful tool compounds to facilitate the construction of genetically modified animal models with the CRISPR-Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Edição de Genes/métodos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores da Topoisomerase/farmacologia , Humanos , Reparo de DNA por Recombinação/efeitos dos fármacos , Técnicas de Introdução de Genes
7.
Neoplasia ; 52: 100996, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38593698

RESUMO

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy, and its incidence has increased rapidly in recent years. The BRAF inhibitor vemurafenib is effective against BRAFV600E-positive PTC; however, acquired resistance to single agent therapy frequently leads to tumor recurrence and metastasis, underscoring the need to develop tailored treatment strategies. We previously showed that the oncogenic kinase PIM1 was associated with the malignant phenotype and prognosis of PTC. In this study, we showed that sustained expression of the PIM1 protein in PTC was affected by the BRAFV600E mutation. Based on this regulatory mechanism, we tested the synergistic effects of inhibitors of BRAF (BRAFi) and PIM1 in BRAFV600E-positive PTC cell lines and xenograft tumors. LC-MS metabolomics analyses suggested that BRAFi/PIMi therapy acted by restricting the amounts of critical amino acids and nucleotides required by cancer cells as well as modulating DNA methylation. This study elucidates the role of BRAFV600E in the regulation of PIM1 in PTC and demonstrates the synergistic effect of a novel combination, BRAFi/PIMi, for the treatment of PTC. This discovery, along with the pathways that may be involved in the powerful efficacy of BRAFi/PIMi strategy from the perspective of cell metabolism, provides insight into the molecular basis of PTC progression and offers new perspectives for BRAF-resistant PTC treatment.


Assuntos
Sinergismo Farmacológico , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas c-pim-1 , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Neuroinflammation ; 21(1): 112, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684986

RESUMO

BACKGROUND: Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS: To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS: Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS: DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.


Assuntos
Anti-Inflamatórios não Esteroides , Doenças Autoimunes , Fumarato de Dimetilo , Imunossupressores , Retina , Uveíte , Fumarato de Dimetilo/administração & dosagem , Fumarato de Dimetilo/farmacologia , Uveíte/genética , Uveíte/imunologia , Uveíte/terapia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Análise da Expressão Gênica de Célula Única , Modelos Animais de Doenças , Animais , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transcrição Gênica , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Atlas como Assunto , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Retina/efeitos dos fármacos , Retina/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia
9.
Medicine (Baltimore) ; 103(6): e36269, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335426

RESUMO

Sequence studies of the entire exome and transcriptome of lymphoma tissues have identified MYD88 and PIM1 as involved in the development and oncogenic signaling. We aimed to determine the frequency of MYD88 and PIM1 mutations, as well as their expressions in conjunction with the clinicopathological parameters identified in mature large B-cell non-Hodgkin lymphomas. The ten-year retrospective study included 50 cases of mature large B-cell lymphoma, diagnosed at the Pathology Department of the Emergency County Hospital of Constanta and Sacele County Hospital of Brasov. They were statistically analyzed by demographic, clinicopathological, and morphogenetic characteristics. We used a real-time polymerase chain reaction technique to identify PIM1 and MYD88 mutations as well as an immunohistochemical technique to evaluate the expressions of the 2 genes. Patients with lymphoma in the small bowel, spleen, brain, and testis had a low-performance status Eastern Cooperative Oncology Group (P = .001). The Eastern Cooperative Oncology Group performance status represented an independent risk factor predicting mortality (HR = 9.372, P < .001). An increased lactate dehydrogenase value was associated with a low survival (P = .002). The international prognostic index score represents a negative risk factor in terms of patient survival (HR = 4.654, P < .001). In cases of diffuse large B-cell lymphoma (DLBCL), immunopositivity of MYD88 is associated with non-germinal center B-cell origin (P < .001). The multivariate analysis observed the association between high lactate dehydrogenase value and the immunohistochemical expression of PIM1 or with the mutant status of the PIM1 gene representing negative prognostic factors (HR = 2.066, P = .042, respectively HR = 3.100, P = .004). In conclusion, our preliminary data suggest that the oncogenic mutations of PIM1 and MYD88 in our DLBCL cohort may improve the diagnosis and prognosis of DLBCL patients in an advanced stage.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Masculino , Humanos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Estudos Retrospectivos , Prognóstico , Linfoma Difuso de Grandes Células B/patologia , Lactato Desidrogenases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
10.
Ann Hematol ; 103(8): 2905-2915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38424303

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common and aggressive type of B-cell lymphoma. Unfortunately, about one-third of patients either relapse after the initial treatment or are refractory to first-line therapy, indicating a need for new treatment modalities. PIM serine/threonine kinases are proteins that are associated with genetic mutations, overexpression, or translocation events in B-cell lymphomas. We conducted an integrative analysis of whole-exome sequencing in 52 DLBCL patients, and no amplification, mutation, or translocation of the PIM1 gene was detected. Instead, analyses of TCGA and GTEx databases identified that PIM1 expression was increased in DLBCL samples compared to normal tissue, and high expression levels were associated with poor overall survival. Moreover, interference of PIM1 significantly suppressed DLBCL cell proliferation. In addition, we identified anwulignan, a natural small-molecule compound, as a PIM1 inhibitor. Anwulignan directly binds to PIM1 and exerts antitumor effects on DLBCL in vitro and in vivo by inducing apoptosis, cell cycle arrest, and autophagic cell death. Furthermore, we identified an effective synergistic combination between anwulignan and chidamide. Our findings suggested that PIM1 could be a therapeutic target and prognostic factor for DLBCL, and anwulignan holds promise for future development as a natural product for treatment.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Camundongos , Animais , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Aminopiridinas/uso terapêutico , Aminopiridinas/farmacologia , Terapia de Alvo Molecular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
11.
Oncogene ; 43(6): 406-419, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38097734

RESUMO

Lipid droplets (LDs) are dynamic organelles with a neutral lipid core surrounded by a phospholipid monolayer. Solid tumors exhibit LD accumulation, and it is believed that LDs promote cell survival by providing an energy source during energy deprivation. However, the precise mechanisms controlling LD accumulation and utilization in prostate cancer are not well known. Here, we show peroxisome proliferator-activated receptor α (PPARα) acts downstream of PIM1 kinase to accelerate LD accumulation and promote cell proliferation in prostate cancer. Mechanistically, PIM1 inactivates glycogen synthase kinase 3 beta (GSK3ß) via serine 9 phosphorylation. GSK3ß inhibition stabilizes PPARα and enhances the transcription of genes linked to peroxisomal biogenesis (PEX3 and PEX5) and LD growth (Tip47). The effects of PIM1 on LD accumulation are abrogated with GW6471, a specific inhibitor for PPARα. Notably, LD accumulation downstream of PIM1 provides a significant survival advantage for prostate cancer cells during nutrient stress, such as glucose depletion. Inhibiting PIM reduces LD accumulation in vivo alongside slow tumor growth and proliferation. Furthermore, TKO mice, lacking PIM isoforms, exhibit suppression in circulating triglycerides. Overall, our findings establish PIM1 as an important regulator of LD accumulation through GSK3ß-PPARα signaling axis to promote cell proliferation and survival during nutrient stress.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta , Gotículas Lipídicas/patologia , PPAR alfa/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-pim-1/genética
12.
Cell Rep ; 42(12): 113469, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039135

RESUMO

The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Animais , Camundongos , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Hematopoese , Diferenciação Celular , Células Th17/metabolismo
13.
Cancer Biol Ther ; 24(1): 2246208, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37621144

RESUMO

Significant improvement in targeted therapy for colorectal cancer (CRC) has occurred over the past few decades since the approval of the EGFR inhibitor cetuximab. However, cetuximab is used only for patients possessing the wild-type oncogene KRAS, NRAS, and BRAF, and even most of these eventually acquire therapeutic resistance, via activation of parallel oncogenic pathways such as RAS-MAPK or PI3K/Akt/mTOR. The two aforementioned pathways also contribute to the development of therapeutic resistance in CRC patients, due to compensatory and feedback mechanisms. Therefore, combination drug therapies (versus monotherapy) targeting these multiple pathways may be necessary for further efficacy against CRC. In this study, we identified PIK3CA mutant (PIK3CA MT) as a determinant of resistance to SMI-4a, a highly selective PIM1 kinase inhibitor, in CRC cell lines. In CRC cell lines, SMI-4a showed its effect only in PIK3CA wild type (PIK3CA WT) cell lines, while PIK3CA MT cells did not respond to SMI-4a in cell death assays. In vivo xenograft and PDX experiments confirmed that PIK3CA MT is responsible for the resistance to SMI-4a. Inhibition of PIK3CA MT by PI3K inhibitors restored SMI-4a sensitivity in PIK3CA MT CRC cell lines. Taken together, these results demonstrate that sensitivity to SMI-4a is determined by the PIK3CA genotype and that co-targeting of PI3K and PIM1 in PIK3CA MT CRC patients could be a promising and novel therapeutic approach for refractory CRC patients.


Assuntos
Neoplasias do Colo , Fosfatidilinositol 3-Quinases , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-pim-1/genética
14.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 1-7, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300695

RESUMO

Diffuse large B cell lymphoma (DLBCL) is a B cell neoplasm characterized by high PIM1 expression, which is responsible for poor prognosis. Activation-induced cytidine deaminase (AID) is closely linked to PIM1 hypermutation in DLBCL. Here, we found that the DNA methyltransferase 1 (DNMT1) level decreased with AID depletion in the DLBCL cell line SU-DHL-4, and increased significantly when AID was highly expressed. The double ablation of AID and DNMT1 contributed to increased PIM1 expression, which initiated faster DLBCL cell proliferation, whereas ten-eleven translocation family member 2 (TET2) decreased with AID deficiency and increased with AID overexpression in DLBCL cell line OCI-LY7. The double depletion of AID and TET2 was associated with decreased PIM1 levels and showed slower cell division. We suggest an alternative role of AID as a co-factor of DNA methylation cooperated with DNMT1, or of DNA demethylation associated with TET2 in modulating PIM1 expression. Our findings demonstrate that AID interacts with either DNMT1 or TET2 to form a complex to bind with a PIM1 promoter and thus is responsible for the modulation of PIM1 expression. These results provide insights into an alternative role of AID to DLBCL-associated genes.


Assuntos
Citidina Desaminase , Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Linhagem Celular , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Linfoma Difuso de Grandes Células B/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
15.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042842

RESUMO

Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.


Assuntos
Actinas , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Masculino , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Hipóxia , Proteômica , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Invasividade Neoplásica
16.
J Pediatr Surg ; 58(6): 1155-1163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36907773

RESUMO

BACKGROUND: Neuroblastoma arises from aberrancies in neural stem cell differentiation. PIM kinases contribute to cancer formation, but their precise role in neuroblastoma tumorigenesis is poorly understood. In the current study, we evaluated the effects of PIM kinase inhibition on neuroblastoma differentiation. METHODS: Versteeg database query assessed the correlation between PIM gene expression and the expression of neuronal stemness markers and relapse free survival. PIM kinases were inhibited with AZD1208. Viability, proliferation, motility were measured in established neuroblastoma cells lines and high-risk neuroblastoma patient-derived xenografts (PDXs). qPCR and flow cytometry detected changes in neuronal stemness marker expression after AZD1208 treatment. RESULTS: Database query showed increased levels of PIM1, PIM2, or PIM3 gene expression were associated with higher risk of recurrent or progressive neuroblastoma. Increased levels of PIM1 were associated with lower relapse free survival rates. Higher levels of PIM1 correlated with lower levels of neuronal stemness markers OCT4, NANOG, and SOX2. Treatment with AZD1208 resulted in increased expression of neuronal stemness markers. CONCLUSIONS: Inhibition of PIM kinases differentiated neuroblastoma cancer cells toward a neuronal phenotype. Differentiation is a key component of preventing neuroblastoma relapse or recurrence and PIM kinase inhibition provides a potential new therapeutic strategy for this disease.


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Humanos , Proliferação de Células , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Diferenciação Celular , Fenótipo , Neuroblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia
17.
Mol Cancer ; 22(1): 18, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694243

RESUMO

Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.


Assuntos
Neoplasias Hematológicas , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
18.
Int J Gynecol Pathol ; 42(3): 282-292, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443252

RESUMO

Serous carcinoma (SC) is an aggressive histologic type of endometrial carcinoma (EMC) with a poor prognosis. The development of novel therapeutics for SC is an important issue. PIM1 is a serine/threonine kinase involved in various cellular functions, such as cell cycle progression, apoptosis, and transcriptional activation via the phosphorylation of many target proteins, including MYC. PIM1 is overexpressed in several cancers and has been associated with treatment-resistance. We investigated the expression and function of PIM1 in EMC, particularly SC. Immunohistochemical analysis in 133 EMC cases [103 endometrioid carcinomas (EC) and 30 SC] revealed the significantly stronger expression of PIM1 in SC than in EC and significantly shorter survival of patients with overexpression of PIM1 in all EMC cases, as well as in only SC cases. A multivariate analysis identified overexpression of PIM1 as an independent prognostic factor. The knockdown of PIM1 by siRNA in the SC cell line, ARK1, decreased the expression of phosphorylated MYC and reduced proliferation, migration, and invasion. The PIM1 inhibitor, SGI-1776, reduced cell viability in SC cell lines (ARK1, ARK2, and SPAC1L) with IC50 between 1 and 5 µM. SGI-1776 also reduced the migration and invasion of ARK1 cells. Moreover, the oral administration of SGI-1776 significantly suppressed subcutaneous ARK1 xenograft tumor growth in nude mice without impairing health. These results indicate that PIM1 is involved in the acquisition of aggressiveness and suggest the potential of PIM1 as a novel therapeutic target and SGI-1776 as a therapeutic agent for SC.


Assuntos
Carcinoma , Neoplasias do Endométrio , Animais , Camundongos , Feminino , Humanos , Linhagem Celular Tumoral , Prognóstico , Camundongos Nus , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Endométrio/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
19.
Cell Mol Gastroenterol Hepatol ; 15(1): 121-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36191855

RESUMO

BACKGROUND & AIMS: Metastasis indicates a grave prognosis in patients with hepatocellular carcinoma (HCC). Our previous studies showed that RNA binding motif protein Y-linked (RBMY) is potentially a biomarker for poor survival in HCC patients, but its role in metastasis is largely unclear. METHODS: A total of 308 male patients with primary HCC were enrolled. RBMY expression was traced longitudinally by immunostaining from the manifestation of a primary HCC tumor to the formation of a distant metastasis, and its upstream regulators were screened with a protein microarray. A series of metastasis assays in mouse models and HCC cell lines were performed to explore new functional insights into RBMY. RESULTS: Cytoplasmic expression of RBMY was associated with rapid distant metastasis (approximately 1 year after resection) and had a predictive power of 82.4% for HCC metastasis. RBMY conferred high migratory and invasive potential upon phosphorylation by the provirus integration in Moloney 1 (PIM1) kinase. Binding of PIM1 to RBMY caused mutual stabilization and massive translocation of RBMY from nuclei to mitochondria, thereby preventing mitochondrial apoptosis and augmenting mitochondrial generation of adenosine triphosphate/reactive oxygen species to enhance cell motility. Depletion of RBMY suppressed Snail1/zinc finger E-box binding homeobox transcription factor 1-mediated epithelial-mesenchymal transition and dynamin-related protein 1-dependent mitochondrial fission. Inactivation and knockout of PIM1 down-regulated the expression of RBMY. In nude mice, cytoplasmic RBMY promoted liver-to-lung metastasis by increasing epithelial-mesenchymal transition, mitochondrial proliferation, and mitochondrial fission, whereas nuclear-restricted RBMY impeded the mitochondrial switch and failed to induce lung metastasis. CONCLUSIONS: This study showed the regulation of HCC metastasis by PIM1-driven cytoplasmic expression of RBMY and suggested a novel therapeutic target for attenuating metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-pim-1 , Proteínas de Ligação a RNA , Animais , Masculino , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Camundongos Nus , Integração Viral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
20.
Nat Commun ; 13(1): 5866, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195600

RESUMO

Uveitis is a severe autoimmune disease, and a common cause of blindness; however, its individual cellular dynamics and pathogenic mechanism remain poorly understood. Herein, by performing single-cell RNA sequencing (scRNA-seq) on experimental autoimmune uveitis (EAU), we identify disease-associated alterations in cell composition and transcriptional regulation as the disease progressed, as well as a disease-related molecule, PIM1. Inhibiting PIM1 reduces the Th17 cell proportion and increases the Treg cell proportion, likely due to regulation of PIM1 to the protein kinase B (AKT)/Forkhead box O1 (FOXO1) pathway. Moreover, inhibiting PIM1 reduces Th17 cell pathogenicity and reduces plasma cell differentiation. Importantly, the upregulation of PIM1 in CD4+ T cells and plasma cells is conserved in a human uveitis, Vogt-Koyanagi-Harada disease (VKH), and inhibition of PIM1 reduces CD4+ T and B cell expansion. Collectively, a dynamic immune cellular atlas during uveitis is developed and implicate that PIM1 may be a potential therapeutic target for VKH.


Assuntos
Doenças Autoimunes , Uveíte , Síndrome Uveomeningoencefálica , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células Th17 , Uveíte/tratamento farmacológico , Uveíte/genética , Síndrome Uveomeningoencefálica/tratamento farmacológico , Síndrome Uveomeningoencefálica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA