Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Care Med ; 46(6): e600-e608, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29489460

RESUMO

OBJECTIVES: Delirium occurs in approximately 30% of critically ill patients, and the risk of dying during admission doubles in those patients. Molecular mechanisms causing delirium are largely unknown. However, critical illness and the ICU environment consistently disrupt circadian rhythms, and circadian disruptions are strongly associated with delirium. Exposure to benzodiazepines and constant light are suspected risk factors for the development of delirium. Thus, we tested the functional role of the circadian rhythm protein Period 2 (PER2) in different mouse models resembling delirium. DESIGN: Animal study. SETTING: University experimental laboratory. SUBJECTS: Wildtype, Per2 mice. INTERVENTIONS: Midazolam, lipopolysaccharide (lipopolysaccharide), constant light, nobiletin, or sham-treated animals. MEASUREMENTS AND MAIN RESULTS: Midazolam significantly reduced the expression of PER2 in the suprachiasmatic nucleus and the hippocampus of wild-type mice. Behavioral tests following midazolam exposure revealed a robust phenotype including executive dysfunction and memory impairment suggestive of delirium. These findings indicated a critical role of hippocampal expressed PER2. Similar results were obtained in mice exposed to lipopolysaccharide or constant light. Subsequent studies in Per2 mice confirmed a functional role of PER2 in a midazolam-induced delirium-like phenotype. Using the small molecule nobiletin to enhance PER2 function, the cognitive deficits induced by midazolam or constant light were attenuated in wild-type mice. CONCLUSIONS: These experiments identify a novel role for PER2 during a midazolam- or constant light-induced delirium-like state, highlight the importance of hippocampal PER2 expression for cognitive function, and suggest the PER2 enhancer nobiletin as potential therapy in delirium-like conditions associated with circadian disruption.


Assuntos
Transtornos Cronobiológicos/tratamento farmacológico , Delírio/tratamento farmacológico , Proteínas Circadianas Period/uso terapêutico , Animais , Transtornos Cronobiológicos/etiologia , Transtornos Cronobiológicos/metabolismo , Delírio/etiologia , Delírio/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Midazolam/farmacologia , Atividade Motora/efeitos dos fármacos , Proteínas Circadianas Period/fisiologia , Núcleo Supraquiasmático/metabolismo
2.
Curr Biol ; 21(21): 1783-93, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22018542

RESUMO

BACKGROUND: Circadian rhythms regulate physiology and behavior through transcriptional feedback loops of clock genes running within specific pacemaker cells. In Drosophila, molecular oscillations in the small ventral lateral neurons (sLNvs) command rhythmic behavior under free-running conditions releasing the neuropeptide PIGMENT DISPERSING FACTOR (PDF) in a circadian fashion. Electrical activity in the sLNvs is also required for behavioral rhythmicity. Yet, how temporal information is transduced into behavior remains unclear. RESULTS: Here we developed a new tool for temporal control of gene expression to obtain adult-restricted electrical silencing of the PDF circuit, which led to reversible behavioral arrhythmicity. Remarkably, PERIOD (PER) oscillations during the silenced phase remained unaltered, indicating that arrhythmicity is a direct consequence of the silenced activity. Accordingly, circadian axonal remodeling and PDF accumulation were severely affected during the silenced phase. CONCLUSIONS: Although electrical activity of the sLNvs is not a clock component, it coordinates circuit outputs leading to rhythmic behavior.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Drosophila/fisiologia , Neuropeptídeos/fisiologia , Proteínas Circadianas Period/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Relógios Biológicos , Encéfalo/embriologia , Encéfalo/fisiologia , Ritmo Circadiano , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Potenciais da Membrana , Atividade Motora , Neurônios/metabolismo , Neuropeptídeos/genética , Proteínas Circadianas Period/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA