RESUMO
Communication between individuals via molecules, termed chemosignaling, is widespread among animal and plant species. However, we lack knowledge on the specific functions of the substances involved for most systems. The femoral gland is an organ that secretes a waxy substance involved in chemical communication in lizards. Although the lipids and volatile substances secreted by the femoral glands have been investigated in several biochemical studies, the protein composition and functions of secretions remain completely unknown. Applying a proteomic approach, we provide the first attempt to comprehensively characterize the protein composition of femoral gland secretions from the Galápagos marine iguana. Using samples from several organs, the marine iguana proteome was assembled by next-generation sequencing and MS, resulting in 7513 proteins. Of these, 4305 proteins were present in the femoral gland, including keratins, small serum proteins, and fatty acid-binding proteins. Surprisingly, no proteins with discernible roles in partner recognition or inter-species communication could be identified. However, we did find several proteins with direct associations to the innate immune system, including lysozyme C, antileukoproteinase (ALP), pulmonary surfactant protein (SFTPD), and galectin (LGALS1) suggesting that the femoral glands function as an important barrier to infection. Furthermore, we report several novel anti-microbial peptides from the femoral glands that show similar action against Escherichia coli and Bacillus subtilis such as oncocin, a peptide known for its effectiveness against Gram-negative pathogens. This proteomics data set is a valuable resource for future functional protein analysis and demonstrates that femoral gland secretions also perform functions of the innate immune system.
Assuntos
Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Iguanas/metabolismo , Sistema Imunitário/metabolismo , Imunidade Inata , Proteoma/metabolismo , Transcriptoma , Animais , Apoproteínas/genética , Apoproteínas/metabolismo , Bacillus subtilis/efeitos dos fármacos , Encéfalo/metabolismo , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/metabolismo , Equador , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/efeitos dos fármacos , Galectinas/genética , Galectinas/metabolismo , Coração/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Iguanas/genética , Iguanas/imunologia , Imunidade Inata/genética , Pulmão/metabolismo , Muramidase/genética , Muramidase/metabolismo , Músculos/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , Proteoma/genética , Proteoma/imunologia , Proteômica , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Pele/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma/genéticaRESUMO
As a ß2 integrin family member, Mac-1 plays an important role in the inflammatory response. Inflammation and lung injury are closely associated, but the involvement of Mac-1 in the occurrence and development of such pathologies remains poorly understood. We aimed to investigate the relationship between Mac-1 deficiency and respiratory failure in Mac-1 knockout {Mac-1-/-} mice, using C57BL/6J mice as a control. The newborn survival rate of Mac-1-/- mice was calculated, and mouse lung tissue was treated with hematoxylin and eosin and subjected to immunofluorescent staining. Moreover, western blotting and immunohistochemistry were used to detect the expression of molecules specific to type I and type II alveolar epithelial cells, as well as alveolar surfactant proteins secreted by the latter. Survival of Mac-1-/- pups was significantly lower than that of newborn C57BL/6J mice. In a float test, lung tissues from C57BL/6J mice were buoyant, whereas those of Mac-1-/- mice were not. Compared with C57BL/6J mice, expression of proSP-C {specific to type II alveolar epithelial cells} and alveolar surfactant proteins in Mac-1-/- mice was not significantly different, implying that type II cell function was unaltered. However, western blotting revealed expression of T1α, Aqp5, and Snx5 {type I alveolar epithelial cell markers} in Mac-1-/- mice to be significantly decreased {P < 0.05}. In conclusion, Mac-1 may play an important role in respiratory failure. Its absence leads to this condition not by influencing type II alveolar epithelial cells or their secreted surfactant proteins, but rather by reducing type I alveolar cell numbers.
Assuntos
Células Epiteliais Alveolares/metabolismo , Antígeno CD11b/genética , Insuficiência Respiratória/metabolismo , Animais , Antígeno CD11b/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologiaRESUMO
Pulmonary surfactant is a substance composed of a lipoprotein complex that is essential to pulmonary function. Pulmonary surfactant proteins play an important role in the structure, function, and metabolism of surfactant; 4 specific surfactant proteins have been identified: surfactant proteins-A, surfactant proteins-B, surfactant proteins-C, and surfactant proteins-D. Clinical, epidemiological, and biochemical evidence suggests that the etiology of respiratory distress syndrome is multifactorial with a significant genetic component. There are reports about polymorphisms and mutations on the surfactant protein genes, especially surfactant proteins-B, that may be associated with respiratory distress syndrome, acute respiratory distress syndrome, and congenital alveolar proteinosis. Individual differences regarding respiratory distress syndrome and acute respiratory distress syndrome as well as patient response to therapy might reflect phenotypic diversity due to genetic variation, in part. The study of the differences between the allelic variants of the surfactant protein genes can contribute to the understanding of individual susceptibility to the development of several pulmonary diseases. The identification of the polymorphisms and mutations that are indeed important for the pathogenesis of the diseases related to surfactant protein dysfunction, leading to the possibility of genotyping individuals at increased risk, constitutes a new research field. In the future, findings in these endeavors may enable more effective genetic counseling as well as the development of prophylactic and therapeutic strategies that would provide a real impact on the management of newborns with respiratory distress syndrome and other pulmonary diseases.
Assuntos
Mutação , Proteínas Associadas a Surfactantes Pulmonares/genética , Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Predisposição Genética para Doença , Variação Genética , Humanos , Recém-Nascido , Polimorfismo Genético , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/deficiência , Proteína B Associada a Surfactante Pulmonar/deficiência , Proteína C Associada a Surfactante Pulmonar/deficiência , Proteína D Associada a Surfactante Pulmonar/deficiência , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismoRESUMO
Pulmonary surfactant is a substance composed of a lipoprotein complex that is essential to pulmonary function. Pulmonary surfactant proteins play an important role in the structure, function, and metabolism of surfactant; 4 specific surfactant proteins have been identified: surfactant proteins-A, surfactant proteins-B, surfactant proteins-C, and surfactant proteins-D. Clinical, epidemiological, and biochemical evidence suggests that the etiology of respiratory distress syndrome is multifactorial with a significant genetic component. There are reports about polymorphisms and mutations on the surfactant protein genes, especially surfactant proteins-B, that may be associated with respiratory distress syndrome, acute respiratory distress syndrome, and congenital alveolar proteinosis. Individual differences regarding respiratory distress syndrome and acute respiratory distress syndrome as well as patient response to therapy might reflect phenotypic diversity due to genetic variation, in part. The study of the differences between the allelic variants of the surfactant protein genes can contribute to the understanding of individual susceptibility to the development of several pulmonary diseases. The identification of the polymorphisms and mutations that are indeed important for the pathogenesis of the diseases related to surfactant protein dysfunction, leading to the possibility of genotyping individuals at increased risk, constitutes a new research field. In the future, findings in these endeavors may enable more effective genetic counseling as well as the development of prophylactic and therapeutic strategies that would provide a real impact on the management of newborns with respiratory distress syndrome and other pulmonary diseases.
O surfactante pulmonar é uma substância composta por um complexo lipoprotéico essencial para a função pulmonar normal. As proteínas do surfactante têm importante papel na estrutura, função e metabolismo do surfactante. São descritas quatro proteínas específicas denominadas surfactante pulmonar-A, surfactante pulmonar-B, surfactante pulmonar-C e surfactante pulmonar-D. Evidências clínicas, epidemiológicas e bioquímicas sugerem que a etiologia da síndrome do desconforto respiratório é multifatorial com um componente genético significativo. Existem na literatura algumas descrições sobre a presença de polimorfismos e mutações em genes dos componentes do surfactante, particularmente no gene da surfactante pulmonar-B, os quais parecem estar associados à síndrome do desconforto respiratório, síndrome da angustia respiratória aguda e proteinose alveolar congênita. Diferenças individuais relacionadas à síndrome do desconforto respiratórioe síndrome da angustia respiratória aguda e à resposta dos pacientes ao tratamento podem refletir diversidade fenotípica, devido, parcialmente, à variação genética. O estudo das diferenças entre as variantes alélicas dos genes das proteínas do surfactante pode ajudar na compreensão das variabilidades individuais na susceptibilidade ao desenvolvimento de várias doenças pulmonares. A determinação de quais polimorfismos e mutações são, de fato, importantes na patogênese das doenças relacionadas à disfunção das proteínas do surfactante e a possibilidade da realização da genotipagem em indivíduos de alto risco constitui um novo campo de pesquisa, que pode permitir, futuramente, um aconselhamento genético mais efetivo, resultando no desenvolvimento de estratégias profiláticas e terapêuticas que representem um impacto real no manejo dos recém-nascidos portadores da síndrome do desconforto respiratório e outras patologias pulmonares.