Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.822
Filtrar
1.
Medicine (Baltimore) ; 103(36): e39552, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39252244

RESUMO

Abnormalities in coagulation and fibrinolytic status have been demonstrated to be relevant to inflammatory bowel disease. Nevertheless, there is no study to methodically examine the role of the coagulation and fibrinolysis-related genes in the diagnosis of ulcerative colitis (UC). UC-related datasets (GSE169568 and GSE94648) were originated from the Gene Expression Omnibus database. The biomarkers related to coagulation and fibrinolysis were identified through combining differentially expressed analysis and machine learning algorithms. Moreover, Gene Set Enrichment Analysis and immune analysis were carried out. A total of 4 biomarkers (MAP2K1, CREBBP, TAF1, and HP) were identified, and biomarkers were markedly enriched in pathways related to immunity, such as T-cell receptor signaling pathway, primary immunodeficiency, chemokine signaling pathway, etc. In total, the infiltrating abundance of 4 immune cells between UC and control was markedly different, namely eosinophils, macrophage M0, resting mast cells, and regulatory T cells. And all biomarkers were significantly relevant to eosinophils. Our findings detected 4 coagulation and fibrinolysis-related biomarkers (MAP2K1, CREBBP, TAF1, and HP) for UC, which contributed to the advancement of UC for further clinical investigation.


Assuntos
Biomarcadores , Proteína de Ligação a CREB , Colite Ulcerativa , Biologia Computacional , Fibrinólise , Humanos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/sangue , Colite Ulcerativa/genética , Biomarcadores/sangue , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/sangue , Coagulação Sanguínea , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/sangue , Aprendizado de Máquina , Carboxipeptidase B2/sangue , Carboxipeptidase B2/genética
2.
Mol Cancer ; 23(1): 209, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342174

RESUMO

BACKGROUND: BCR-ABL is a constitutively active tyrosine kinase that stimulates multiple downstream signaling pathways to promote the survival and proliferation of chronic myeloid leukemia (CML) cells. The clinical application of specific BCR-ABL tyrosine kinase inhibitors (TKIs) has led to significantly improved prognosis and overall survival in CML patients compared to previous treatment regimens. However, direct targeting of BCR-ABL does not eradicate CML cells expressing T315I-mutated BCR-ABL. Our previous study revealed that inhibiting CREB binding protein (CBP) is efficacious in activating ß-catenin/p300 signaling, promoting cell differentiation and inducing p53/p21-dependent senescence regardless of BCR-ABL mutation status. We hypothesize that the specific inhibition of CBP may represent a novel strategy to promote ß-catenin/p300-mediated differentiation and suppress cancer cell proliferation for treating CML patients. METHODS: The anticancer efficacy of PBA2, a novel CBP inhibitor, in CML cells expressing wild-type or T315I-mutated BCR-ABL was investigated in vitro and in vivo. Cell differentiation was determined by the nitroblue tetrazolium (NBT) reduction assay. The extent of cellular senescence was assessed by senescence-associated ß-galactosidase (SA-ß-Gal) activity. Cytotoxicity was measured by MTS assay. RNA interference was performed to evaluate the cell proliferation effects of CBP knockdown. The interaction of ß-catenin and CBP/p300 was examined by co-immunoprecipitation assay. RESULTS: PBA2 exhibited significantly higher anticancer effects than imatinib in CML cells harboring either wild-type or T315I-mutated BCR-ABL both in vitro and in vivo. Mechanistically, PBA2 reduced CBP expression and promoted ß-catenin-p300 interaction to induce cell differentiation and senescence. CONCLUSION: Our data supported the rational treatment of CML by inhibiting the ß-catenin/CBP pathway regardless of BCR-ABL mutation status.


Assuntos
Proteína de Ligação a CREB , Proliferação de Células , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Mutação , Transdução de Sinais , beta Catenina , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/antagonistas & inibidores , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Diferenciação Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1431-1440, 2024 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-39276038

RESUMO

OBJECTIVE: To explore the effects of Qingshen Granules (QSG) on adenine-induced renal fibrosis in mice and in uric acid (UA)-stimulated NRK-49F cells and its mechanism for regulating exosomes, miR-330-3p and CREBBP. METHODS: A mouse model of adenine-induced renal fibrosis were treated daily with QSG at 8.0 g·kg-1·d-1 via gavage for 12 weeks. An adenoassociated virus vector was injected into the tail vein, and renal tissues of the mice were collected for analyzing exosomal marker proteins CD9, Hsp70, and TSG101 and expressions of Col-III, α-SMA, FN, and E-cad using Western blotting and immunofluorescence and for observing pathological changes using HE and Masson staining. In the cell experiment, NRK-49F cells were stimulated with uric acid (400 µmol/L) followed by treatment with QSG-medicated serum from SD rats, and the changes in expressions of the exosomal markers and Col-III, α-SMA, FN, and E-cad were analyzed. Dual luciferase reporter assay was employed to examine the targeting relationship between miR-330-3p and CREBBP, whose expressions were detected by RT-qPCR and Western blotting in treated NRK-49F cells. RESULTS: The mouse models of adenine-induced renal fibrosis showed significantly increased levels of CD9, Hsp70, and TSG101, which were decreased by treatment with QSG. The expressions of Col-III, α-SMA, and FN increased and Ecad decreased in the mouse models but these changes were reversed by QSG treatment. QSG treatment obviously alleviated renal fibrosis in the mouse models. Intravenous injection of adeno-associated viral vector obviously inhibited miR-330-3p, increased CREBBP levels, and reduced fibrosis in the mouse models. Dual luciferase assay confirmed CREBBP as a target of miR-330-3p, which was consistent with the results of the cell experiments. CONCLUSION: QSG inhibits renal fibrosis in mice by regulating the exosomes, reducing miR-330-3p levels, and increasing CREBBP expression.


Assuntos
Exossomos , Fibrose , Rim , MicroRNAs , Animais , Exossomos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Rim/patologia , Rim/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética , Nefropatias/metabolismo , Nefropatias/induzido quimicamente , Medicamentos de Ervas Chinesas/farmacologia , Adenina , Ratos , Masculino , Ácido Úrico , Linhagem Celular
4.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273276

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy worldwide. Molecular classifications have tried to improve cure rates. We prospectively examined and correlated the mutational landscape with the clinical features and outcomes of 185 Mexican patients (median age 59.3 years, 50% women) with newly diagnosed DLBCL. A customized panel of 79 genes was designed, based on previous international series. Most patients had ECOG performance status (PS) < 2 (69.2%), advanced-stage disease (72.4%), germinal-center phenotype (68.1%), and double-hit lymphomas (14.1%). One hundred and ten (59.5%) patients had at least one gene with driver mutations. The most common mutated genes were as follows: TP53, EZH2, CREBBP, NOTCH1, and KMT2D. The median follow-up was 42 months, and the 5-year relapse-free survival (RFS) and overall survival (OS) rates were 70% and 72%, respectively. In the multivariate analysis, both age > 50 years and ECOG PS > 2 were significantly associated with a worse OS. Our investigation did not reveal any discernible correlation between the presence of a specific mutation and survival. In conclusion, using a customized panel, we characterized the mutational landscape of a large cohort of Mexican DLBCL patients. These results need to be confirmed in further studies.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Linfoma Difuso de Grandes Células B , Mutação , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Feminino , Pessoa de Meia-Idade , Masculino , México/epidemiologia , Idoso , Adulto , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Idoso de 80 Anos ou mais , Estudos Prospectivos , Receptor Notch1/genética , Proteína de Ligação a CREB/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Neoplasias/genética , Adulto Jovem , Prognóstico , Adolescente , Proteínas de Ligação a DNA
5.
J Virol ; 98(9): e0079624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39115433

RESUMO

Host cells have evolved an intricate regulatory network to fine tune the type-I interferon responses. However, the full picture of this regulatory network remains to be depicted. In this study, we found that knock out of zinc-finger CCHC-type containing protein 8 (ZCCHC8) impairs the replication of influenza A virus (IAV), Sendai virus (Sev), Japanese encephalitis virus (JEV), and vesicular stomatitis virus (VSV). Further investigation unveiled that ZCCHC8 suppresses the type-I interferon responses by targeting the interferon regulatory factor 3 (IRF3) signaling pathway. Mechanistically, ZCCHC8 associates with phosphorylated IRF3 and disrupts the interaction of IRF3 with the co-activator CREB-binding protein (CBP). Additionally, the direct binding of ZCCHC8 with the IFN-stimulated response element (ISRE) impairs the ISRE-binding of IRF3. Our study contributes to the comprehensive understanding for the negative regulatory network of the type-I interferon responses and provides valuable insights for the control of multiple viruses from a host-centric perspective.IMPORTANCEThe innate immune responses serve as the initial line of defense against invading pathogens and harmful substances. Negative regulation of the innate immune responses plays an essential role in avoiding auto-immune diseases and over-activated immune responses. Hence, the comprehensive understanding of the negative regulation network for innate immune responses could provide novel therapeutic insights for the control of viral infections and immune dysfunction. In this study, we report that ZCCHC8 negatively regulates the type-I interferon responses. We illustrate that ZCCHC8 impedes the IRF3-CBP association by interacting with phosphorylated IRF3 and competes with IRF3 for binding to ISRE. Our study demonstrates the role of ZCCHC8 in the replication of multiple RNA viruses and contributes to a deeper understanding of the negative regulation system for the type-I interferon responses.


Assuntos
Proteína de Ligação a CREB , Imunidade Inata , Fator Regulador 3 de Interferon , Interferon Tipo I , Vírus Sendai , Transdução de Sinais , Replicação Viral , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Humanos , Células HEK293 , Vírus Sendai/fisiologia , Vírus Sendai/genética , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética , Vírus de RNA/fisiologia , Vírus de RNA/imunologia , Vírus de RNA/genética , Animais , Células A549 , Vírus da Influenza A/fisiologia , Vírus da Influenza A/imunologia , Fosforilação , Interações Hospedeiro-Patógeno , Vesiculovirus/fisiologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/imunologia
6.
Am J Physiol Endocrinol Metab ; 327(4): E459-E468, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39140972

RESUMO

Brown and beige adipose tissues are specialized for thermogenesis and are important for energy balance in mice. Mounting evidence suggests that chromatin-modifying enzymes are integral for the development, maintenance, and functioning of thermogenic adipocytes. p300 and cAMP-response element binding protein (CREB)-binding protein (CBP) are histone acetyltransferases (HATs) responsible for writing the transcriptionally activating mark H3K27ac. Despite their homology, p300 and CBP do have unique tissue- and context-dependent roles, which have yet to be examined in brown and beige adipocytes specifically. We assessed the requirement of p300 or CBP in thermogenic fat using uncoupling protein 1 (Ucp1)-Cre-mediated knockdown in mice to determine whether their loss impacted tissue development, susceptibility to diet-induced obesity, and response to pharmacological induction via ß3-agonism. Despite successful knockdown, brown adipose tissue mass and expression of thermogenic markers were unaffected by loss of either HAT. As such, knockout mice developed a comparable degree of diet-induced obesity and glucose intolerance to that of floxed controls. Furthermore, "browning" of white adipose tissue by the ß3-adrenergic agonist CL-316,243 remained largely intact in knockout mice. Although p300 and CBP have nonoverlapping roles in other tissues, our results indicate that they are individually dispensable within thermogenic fats specifically, possibly due to functional compensation by one another.NEW & NOTEWORTHY The role of transcriptionally activating H3K27ac epigenetic mark has yet to be examined in mouse thermogenic fats specifically, which we achieved here via Ucp1-Cre-driven knockdown of the histone acetyltransferases (HAT) p300 or CBP under several metabolic contexts. Despite successful knockdown of either HAT, brown adipose tissue was maintained at room temperature. As such, knockout mice were indistinguishable to controls when fed an obesogenic diet or when given a ß3-adrenergic receptor agonist to induce browning of white fat. Unlike other tissues, thermogenic fats are resilient to p300 or CBP ablation, likely due to sufficient functional overlap between them.


Assuntos
Tecido Adiposo Marrom , Obesidade , Termogênese , Animais , Termogênese/genética , Camundongos , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Obesidade/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Dieta Hiperlipídica , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética , Camundongos Endogâmicos C57BL , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Camundongos Knockout , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Bege/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/genética , Técnicas de Silenciamento de Genes , Dioxóis
7.
Blood Cancer J ; 14(1): 147, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191762

RESUMO

Follicular lymphoma (FL) is the most common indolent type of B-cell non-Hodgkin lymphoma. Advances in treatment have improved overall survival, but early relapse or transformation to aggressive disease is associated with inferior outcome. To identify early genetic events and track tumor clonal evolution, we performed multi-omics analysis of 94 longitudinal biopsies from 44 FL patients; 22 with transformation (tFL) and 22 with relapse without transformation (nFL). Deep whole-exome sequencing confirmed recurrent mutations in genes encoding epigenetic regulators (CREBBP, KMT2D, EZH2, EP300), with similar mutational landscape in nFL and tFL patients. Calculation of genomic distances between longitudinal samples revealed complex evolutionary patterns in both subgroups. CREBBP and KMT2D mutations were identified as genetic events that occur early in the disease course, and cases with CREBBP KAT domain mutations had low risk of transformation. Gains in chromosomes 12 and 18 (TCF4), and loss in 6q were identified as early and stable copy number alterations. Identification of such early and stable genetic events may provide opportunities for early disease detection and disease monitoring. Integrative analysis revealed that tumors with EZH2 mutations exhibited reduced gene expression of numerous histone genes, including histone linker genes. This might contribute to the epigenetic dysregulation in FL.


Assuntos
Genômica , Linfoma Folicular , Mutação , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Genômica/métodos , Adulto , Sequenciamento do Exoma , Variações do Número de Cópias de DNA , Proteína de Ligação a CREB/genética , Estudos Longitudinais , Idoso de 80 Anos ou mais , Multiômica
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 973-976, 2024 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-39097282

RESUMO

OBJECTIVE: To explore the clinical characteristics and variant of CREBBP gene in a fetus with Rubinstein-Taybi syndrome (RSTS). METHODS: A fetus with RSTS diagnosed at the Third Affiliated Hospital of Zhengzhou University in August 2022 was selected as the study subject. Clinical data, amniotic fluid sample of the fetus and peripheral blood samples of its parents were collected for whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing. RESULTS: Foot malformation, cerebellar vermis agenesis, brain agenesis, polysyndactyly of the big toes and other phenotypes were found by prenatal ultrasound. WES revealed that the fetus has harbored a heterozygous c.4684G>T (p.E1562*) variant in exon 28 of the CREBBP gene (NM_004380.3), which was de novo in origin. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted to be pathogenic (PVS1+PS2_Moderate+PM2_Supporting). After genetic counseling, the couple had opted to terminate the pregnancy and refused autopsy of the fetus. CONCLUSION: The c.4684G>T (p.E1562*) variant of the CREBBP gene probably underlay the RSTS in this fetus. The newly discovered variant has enriched the mutational spectrum of the CREBBP gene and illustrated that WES is an efficient tool for the prenatal diagnosis of RSTS.


Assuntos
Proteína de Ligação a CREB , Sequenciamento do Exoma , Diagnóstico Pré-Natal , Síndrome de Rubinstein-Taybi , Humanos , Síndrome de Rubinstein-Taybi/genética , Feminino , Gravidez , Proteína de Ligação a CREB/genética , Adulto , Feto/anormalidades , Feto/diagnóstico por imagem , Mutação , Masculino , Ultrassonografia Pré-Natal
9.
Leukemia ; 38(10): 2087-2089, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39030358

RESUMO

The genetic era has opened the opportunity of using personalized therapeutic approaches, in part based on targeting genes with somatic mutations. For example, lymphomas harboring the highly recurrent CREBBP mutation show dependency on HDAC3, thus selective inhibition of HDAC3 reversed the epigenetic effects of CREBBP mutation, halted lymphoma growth, and induced MHC class II expression, enabling the T-cells to recognize and kill lymphoma cells. However, CREBBP wild type (WT) cells are less sensitive to this approach. In this issue of Leukemia, He et al. have executed a genome-wide CRISPR screening that identified GNAS as a target to maximize the therapeutic activity of HDAC3 inhibition in CREBBP WT lymphoma.


Assuntos
Proteína de Ligação a CREB , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Histona Desacetilases , Linfoma de Células B , Humanos , Proteína de Ligação a CREB/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Linfoma de Células B/genética , Linfoma de Células B/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inativação Gênica
10.
J Chem Inf Model ; 64(12): 4739-4758, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38863138

RESUMO

Despite recent success in the computational approaches of cyclic peptide design, current studies face challenges in modeling noncanonical amino acids and nonstandard cyclizations due to limited data. To address this challenge, we developed an integrated framework for the tailored design of stapled peptides (SPs) targeting the bromodomain of CREBBP (CREBBP-BrD). We introduce a powerful combination of anchored stapling and hierarchical molecular dynamics to design and optimize SPs by employing the MultiScale integrative conformational dynamics assessment (MSICDA) strategy, which involves an initial virtual screening of over 1.5 million SPs, followed by comprehensive simulations amounting to 154.54 µs across 5418 of instances. The MSICDA method provides a detailed and holistic stability view of peptide-protein interactions, systematically isolated optimized peptides and identified two leading candidates, DA#430 and DA#99409, characterized by their enhanced stability, optimized binding, and high affinity toward the CREBBP-BrD. In cell-free assays, DA#430 and DA#99409 exhibited 2- to 12-fold greater potency than inhibitor SGC-CBP30. Cell studies revealed higher peptide selectivity for cancerous versus normal cells over small molecules. DA#430 combined with (+)-JQ-1 showed promising synergistic effects. Our approach enables the identification of peptides with optimized binding, high affinity, and enhanced stability, leading to more precise and effective cyclic peptide design, thereby establishing MSICDA as a generalizable and transformative tool for uncovering novel targeted drug development in various therapeutic areas.


Assuntos
Proteína de Ligação a CREB , Simulação de Dinâmica Molecular , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/antagonistas & inibidores , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Domínios Proteicos , Conformação Proteica , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Linhagem Celular Tumoral , Ligação Proteica
11.
J Med Chem ; 67(11): 9194-9213, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38829718

RESUMO

The epigenetic target CREB (cyclic-AMP responsive element binding protein) binding protein (CBP) and its homologue p300 were promising therapeutic targets for the treatment of acute myeloid leukemia (AML). Herein, we report the design, synthesis, and evaluation of a class of CBP/p300 PROTAC degraders based on our previously reported highly potent and selective CBP/p300 inhibitor 5. Among the compounds synthesized, 11c (XYD129) demonstrated high potency and formed a ternary complex between CBP/p300 and CRBN (AlphaScreen). The compound effectively degraded CBP/p300 proteins and exhibited greater inhibition of growth in acute leukemia cell lines compared to its parent compound 5. Furthermore, 11c demonstrated significant inhibition of tumor growth in a MOLM-16 xenograft model (TGI = 60%) at tolerated dose schedules. Our findings suggest that 11c is a promising lead compound for the treatment of AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/metabolismo , Relação Estrutura-Atividade , Descoberta de Drogas , Proteína de Ligação a CREB/antagonistas & inibidores , Proteína de Ligação a CREB/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo , Proteólise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
12.
Genes (Basel) ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927590

RESUMO

Rubinstein-Taybi syndrome (RTS) is a rare genetic disorder characterized by intellectual disability, facial dysmorphisms, and enlarged thumbs and halluces. Approximately 55% of RTS cases result from pathogenic variants in the CREBBP gene, with an additional 8% linked to the EP300 gene. Given the close relationship between these two genes and their involvement in epigenomic modulation, RTS is grouped into chromatinopathies. The extensive clinical heterogeneity observed in RTS, coupled with the growing number of disorders involving the epigenetic machinery, poses a challenge to a phenotype-based diagnostic approach for these conditions. Here, we describe the first case of a patient clinically diagnosed with RTS with a CREBBP truncating variant in mosaic form. We also review previously described cases of mosaicism in CREBBP and apply clinical diagnostic guidelines to these patients, confirming the good specificity of the consensus. Nonetheless, these reports raise questions about the potential underdiagnosis of milder cases of RTS. The application of a targeted phenotype-based approach, coupled with high-depth NGS, may enhance the diagnostic yield of whole-exome sequencing (WES) in mild and mosaic conditions.


Assuntos
Proteína de Ligação a CREB , Mosaicismo , Mutação , Fenótipo , Síndrome de Rubinstein-Taybi , Feminino , Humanos , Masculino , Proteína de Ligação a CREB/genética , Sequenciamento do Exoma/métodos , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/patologia
13.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929606

RESUMO

Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury.


Assuntos
Proteína de Ligação a CREB , Modelos Animais de Doenças , Proteína 2 de Ligação a Metil-CpG , Neuralgia , Ratos Sprague-Dawley , Animais , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Neuralgia/metabolismo , Neuralgia/etiologia , Masculino , Ratos , Proteína de Ligação a CREB/metabolismo , Gânglios Espinais/metabolismo , RNA Interferente Pequeno , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Imuno-Histoquímica
14.
J Appl Physiol (1985) ; 136(6): 1559-1567, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722753

RESUMO

Mice with skeletal muscle-specific and inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and, thus, whether they could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared with wild type (WT; i.e., Cre negative) littermates. Despite this profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial-specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume, or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.NEW & NOTEWORTHY The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both E1A binding protein p300 (p300) and cAMP-response element-binding protein binding protein (CBP) in skeletal muscle remains unknown. Here, we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca2+ and bypasses membrane depolarization.


Assuntos
Camundongos Knockout , Contração Muscular , Músculo Esquelético , Animais , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Proteína p300 Associada a E1A/metabolismo , Proteína de Ligação a CREB/metabolismo , Masculino , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Acetilação
15.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718570

RESUMO

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Assuntos
Apigenina , Transição Epitelial-Mesenquimal , Glucose , Histonas , Epitélio Pigmentado da Retina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Apigenina/farmacologia , Acetilação/efeitos dos fármacos , Humanos , Glucose/metabolismo , Glucose/toxicidade , Histonas/metabolismo , Linhagem Celular , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/tratamento farmacológico , Proteína p300 Associada a E1A/metabolismo , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética
16.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38717933

RESUMO

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Assuntos
Aromatase , Regulação da Expressão Gênica , Placenta , Estabilidade de RNA , Fator de Transcrição AP-2 , Regiões Promotoras Genéticas , Aromatase/genética , Humanos , Linhagem Celular , Placenta/citologia , Placenta/metabolismo , Proteína de Ligação a CREB/metabolismo , Cromatina , Fator de Transcrição AP-2/metabolismo , Adenosina/análogos & derivados , Adenosina/uso terapêutico
17.
Oncogene ; 43(28): 2172-2183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38783101

RESUMO

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.


Assuntos
Aurora Quinase A , Proteína de Ligação a CREB , Proteínas Proto-Oncogênicas c-myc , Mutações Sintéticas Letais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/antagonistas & inibidores , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Stem Cell Res ; 78: 103456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820863

RESUMO

Rubinstein Taybi Syndrome (RSTS) is a rare genetic disorder which is caused by mutations in either CREBBP or EP300. RSTS with mutations in CREBBP is known as RSTS-1. We have generated an induced pluripotent stem cell (iPSC) line, IGIBi018-A from an Indian RSTS-patient using the episomal reprogramming method. The CREBBP gene in the patient harbours a nonsense mutation at position NM_004380.3(c.6876 del C). IGIBi018-A iPSC showed expression of pluripotent stem cell markers, has a normal karyotype and could be differentiated into three germ layers. This iPSC line will help to explore the role of CREBBP in RSTS associated developmental defects.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Rubinstein-Taybi , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/metabolismo , Síndrome de Rubinstein-Taybi/patologia , Linhagem Celular , Diferenciação Celular , Índia , Masculino , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo
19.
Funct Integr Genomics ; 24(2): 75, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600341

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 µM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.


Assuntos
Carcinoma Hepatocelular , Compostos Heterocíclicos com 3 Anéis , Neoplasias Hepáticas , Pironas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
20.
J Pathol ; 263(2): 242-256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578195

RESUMO

There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Proteína p300 Associada a E1A , Receptores Androgênicos , Transdução de Sinais , Masculino , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas que Contêm Bromodomínio , Proteína de Ligação a CREB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA